
9
__

Specifying Data

As we emphasize throughout this book, there is a distinction between an AMPL model
for an optimization problem, and the data values that define a particular instance of the
problem. Chapters 5 through 8 focused on the declarations of sets, parameters, variables,
objectives and constraints that are necessary to describe models. In this chapter and the
next, we take a closer look at the statements that specify the data.

Examples of AMPL data statements appear in almost every chapter. These statements
offer several formats for lists and tables of set and parameter values. Some formats are
most naturally created and maintained in a text editing or word processing environment,
while others are easy to generate from programs like database systems and spreadsheets.
The display command (Chapter 12) also produces output in these formats. Wherever
possible, similar syntax and concepts are used for both sets and parameters.

This chapter first explains how AMPL’s data command is used, in conjunction with
data statements, to read data values from files such as those whose names end in .dat
throughout our examples. Options to the data command also allow or force selected
sets and parameters to be read again.

Subsequent sections describe data statements, first for lists and then for tables of set
and parameter data, followed by brief sections on initial values for variables, values for
indexed collections of sets, and default values. A summary of data statement formats
appears in Section A.12.

A final section describes the read command, which reads unformatted lists of values
into sets and parameters. Chapter 10 is devoted to AMPL’s features for data stored in
relational database tables.

9.1 Formatted data: the data command

Declarations like param and var, and commands like solve and display, are
executed in model mode , the standard mode for most modeling activity. But model mode
is inconvenient for reading long lists of set and parameter values. Instead AMPL reads its

143

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

144 SPECIFYING DATA CHAPTER 9

data statements in a data mode that is initiated by the data command. In its most com-
mon use, this command consists of the keyword data followed by the name of a file.
For example,

ampl: data diet.dat;

reads data from a file named diet.dat. Filenames containing spaces, semicolons, or
nonprinting characters must be enclosed in quotes.

While reading in data mode, AMPL treats white space, that is, any sequence of space,
tab, and ‘‘newline’’ characters, as a single space. Commas separating strings or numbers
are also ignored. Judicious use of these separators can help to arrange data into easy-to-
read lists and tables; our examples use a combination of spaces and newlines. If data
statements are produced as output from other data management software and sent directly
to AMPL, however, then you may ignore visual appearance and use whatever format is
convenient.

Data files often contain numerous character strings, representing set members or the
values of symbolic parameters. Thus in data mode AMPL does not, in general, require
strings to be enclosed in quotes. Strings that include any character other than letters, dig-
its, underscores, period, + and - must be quoted, however, as in the case of A&P. You
may use a pair of either single quotes (’A&P’) or double quotes ("A&P"), unless the
string contains a quote, in which case the other kind of quote must surround it
("DOMINICK’S") or the surrounding quote must be doubled within it
(’DOMINICK’’S’).

A string that looks like a number (for example "+1" or "3e4") must also be quoted,
to distinguish it from a set member or parameter value that is actually a number. Num-
bers that have the same internal representation are considered to be the same, so that for
example 2, 2.00, 2.e0 and 0.02E+2 all denote the same set member.

When AMPL finishes reading a file in data mode, it normally reverts to whatever
mode it was in before the data command was executed. Hence a data file can itself con-
tain data commands that read data from other files. If the last data statement in a data
file lacks its terminating semicolon, however, then data mode persists regardless of the
previous mode.

A data command with no filename puts AMPL into data mode, so subsequent input
is taken as data statements:

ampl: model dietu.mod;
ampl: data;
ampl data: set MINREQ := A B1 B2 C CAL;
ampl data: set MAXREQ := A NA CAL;
ampl data: display NUTR;
set NUTR := A B1 B2 C CAL NA;

ampl:

AMPL leaves data mode when it sees any statement (like display) that does not begin
with a keyword (like set or param) that begins a data statement. The model com-
mand, with or without filename, also causes a return to model mode.

SECTION 9.2 DATA IN LISTS 145

Model components may be assigned values from any number of data files, by using
multiple data commands. Regardless of the number of files, AMPL checks that no com-
ponent is assigned a value more than once, and duplicate assignments are flagged as
errors. In some situations, however, it is convenient to be able to change the data by issu-
ing new data statements; for example, after solving for one scenario of a model, you
may want to modify some of the data by reading a new data file that corresponds to a sec-
ond scenario. The data values in the new file would normally be treated as erroneous
duplicates, but you can tell AMPL to accept them by first giving a reset data or
update data command. These alternatives are described in Section 11.3, along with
the use of reset data to resample randomly-computed parameters, and of let to
directly assign new set or parameter values.

9.2 Data in lists

For an unindexed (scalar) parameter, a data statement assigns one value:

param avail := 40;

Most of a typical model’s parameters are indexed over sets, however, and their values are
specified in a variety of lists and tables that are introduced in this section and the next,
respectively.

We start with sets of simple one-dimensional objects, and the one-dimensional collec-
tions of parameters indexed over them. We then turn to two-dimensional sets and param-
eters, for which we have the additional option of organizing the data into ‘‘slices’’. The
options for two dimensions are then shown to generalize readily to higher dimensions, for
which we present some three-dimensional examples. Finally, we show how data state-
ments for a set and the parameters indexed over it can be combined to provide a more
concise and convenient representation.

Lists of one-dimensional sets and parameters

For a parameter indexed over a one-dimensional set like

set PROD;
param rate {PROD} > 0;

the specification of the set can be simply a listing of its members:

set PROD := bands coils plate ;

and the parameter’s specification may be virtually the same except for the addition of a
value after each set member:

param rate := bands 200 coils 140 plate 160 ;

The parameter specification could equally well be written

146 SPECIFYING DATA CHAPTER 9

param rate :=
bands 200
coils 140
plate 160 ;

since extra spaces and line breaks are ignored.
If a one-dimensional set has been declared with the attribute ordered or

circular (Section 5.6), then the ordering of its members is taken from the data state-
ment that defines it. For example, we specified

set WEEKS := 27sep 04oct 11oct 18oct ;

as the membership of the ordered set WEEKS in Figure 5-4.
Members of a set must all be different; AMPL will warn of duplicates:

duplicate member coils for set PROD
context: set PROD := bands coils plate coils >>> ; <<<

Also a parameter may not be given more than one value for each member of the set over
which it is indexed. A violation of this rule provokes a similar message:

rate[’bands’] already defined
context: param rate := bands 200 bands 160 >>> ; <<<

The context bracketed by >>> and <<< isn’t the exact point of the error, but the message
makes the situation clear.

A set may be specified as empty by giving an empty list of members; simply put the
semicolon right after the := operator. A parameter indexed over an empty set has no data
associated with it.

Lists of two-dimensional sets and parameters

The extension of data lists to the two-dimensional case is largely straightforward, but
with each set member denoted by a pair of objects. As an example, consider the follow-
ing sets from Figure 6-2a:

set ORIG; # origins
set DEST; # destinations

set LINKS within {ORIG,DEST}; # transportation links

The members of ORIG and DEST can be given as for any one-dimensional sets:

set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;

Then the membership of LINKS may be specified as a list of tuples such as you would
find in a model’s indexing expressions,

set LINKS :=
(GARY,DET) (GARY,LAN) (GARY,STL) (GARY,LAF) (CLEV,FRA)
(CLEV,DET) (CLEV,LAN) (CLEV,WIN) (CLEV,STL) (CLEV,LAF)
(PITT,FRA) (PITT,WIN) (PITT,STL) (PITT,FRE) ;

SECTION 9.2 DATA IN LISTS 147

or as a list of pairs, without the parentheses and commas:

set LINKS :=
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WIN
CLEV STL CLEV LAF PITT FRA PITT WIN
PITT STL PITT FRE ;

The order of members within each pair is significant — the first must be from ORIG, and
the second from DEST — but the pairs themselves may appear in any order.

An alternative, more concise way to describe this set of pairs is to list all second com-
ponents that go with each first component:

set LINKS :=
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE ;

It is also easy to list all first components that go with each second component:

set LINKS :=
(*,FRA) CLEV PITT (*,DET) GARY CLEV (*,LAN) GARY CLEV
(*,WIN) CLEV PITT (*,LAF) GARY CLEV (*,FRE) PITT
(*,STL) GARY CLEV PITT ;

An expression such as (GARY,*) or (*,FRA), resembling a pair but with a component
replaced by a *, is a data template. Each template is followed by a list, whose entries are
substituted for the * to generate pairs; these pairs together make up a slice through the
dimension of the set where the * appears. A tuple without any *’s, like (GARY,DET),
is in effect a template that specifies only itself, so it is not followed by any values. At the
other extreme, in the table that consists of pairs alone,

set LINKS :=
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WIN
CLEV STL CLEV LAF PITT FRA PITT WIN
PITT STL PITT FRE ;

a default template (*,*) applies to all entries.
For a parameter indexed over a two-dimensional set, the AMPL list formats are again

derived from those for sets by placing parameter values after the set members. Thus if we
have the parameter cost indexed over the set LINKS:

param cost {LINKS} >= 0;

then the set data statement for LINKS is extended to become the following param data
statement for cost:

param cost :=
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
PITT STL 28 PITT FRE 99 ;

148 SPECIFYING DATA CHAPTER 9

Lists of slices through a set extend similarly, by placing a parameter value after each
implied set member. Thus, corresponding to our concise data statement for LINKS:

set LINKS :=
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE ;

there is the following statement for the values of cost:

param cost :=
[GARY,*] DET 14 LAN 11 STL 16 LAF 8
[CLEV,*] FRA 27 DET 9 LAN 12 WIN 9 STL 26 LAF 17
[PITT,*] FRA 24 WIN 13 STL 28 FRE 99 ;

The templates are given in brackets to distinguish them from the set templates in paren-
theses, but they work in the same way. Thus a template such as [GARY,*] indicates
that the ensuing entries will be for values of cost that have a first index of GARY, and an
entry such as DET 14 gives cost["GARY","DET"] a value of 14.

All of the above applies just as well to the use of templates that slice on the first
dimension, so that for instance you could also specify parameter cost by:

param cost :=
[*,FRA] CLEV 27 PITT 24
[*,DET] GARY 14 CLEV 9
[*,LAN] GARY 11 CLEV 12
[*,WIN] CLEV 9 PITT 13
[*,STL] GARY 16 CLEV 26 PITT 28
[*,FRE] PITT 99
[*,LAF] GARY 8 CLEV 17

You can even think of the list-of-pairs example,

param cost :=
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
...

as also being a case of this form, corresponding to the default template [*,*].

Lists of higher-dimensional sets and parameters

The concepts underlying data lists for two-dimensional sets and parameters extend
straightforwardly to higher-dimensional cases. The only difference of any note is that
nontrivial slices may be made through more than one dimension. Hence we confine the
presentation here to some illustrative examples in three dimensions, followed by a sketch
of the general rules for the AMPL data list format that are given in Section A.12.

We take our example from Section 6.3, where we suggest a version of the multicom-
modity transportation model that defines a set of triples and costs indexed over them:

set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;

SECTION 9.2 DATA IN LISTS 149

Suppose that ORIG and DEST are as above, that PROD only has members bands and
coils, and that ROUTES has as members certain triples from {ORIG,DEST,PROD}.
Then the membership of ROUTES can be given most simply by a list of triples, either

set ROUTES :=
(GARY,LAN,coils) (GARY,STL,coils) (GARY,LAF,coils)
(CLEV,FRA,bands) (CLEV,FRA,coils) (CLEV,DET,bands)
(CLEV,DET,coils) (CLEV,LAN,bands) (CLEV,LAN,coils)
(CLEV,WIN,coils) (CLEV,STL,bands) (CLEV,STL,coils)
(CLEV,LAF,bands) (PITT,FRA,bands) (PITT,WIN,bands)
(PITT,STL,bands) (PITT,FRE,bands) (PITT,FRE,coils) ;

or

set ROUTES :=
GARY LAN coils GARY STL coils GARY LAF coils
CLEV FRA bands CLEV FRA coils CLEV DET bands
CLEV DET coils CLEV LAN bands CLEV LAN coils
CLEV WIN coils CLEV STL bands CLEV STL coils
CLEV LAF bands PITT FRA bands PITT WIN bands
PITT STL bands PITT FRE bands PITT FRE coils ;

Using templates as before, but with three items in each template, we can break the speci-
fication into slices through one dimension by placing one * in each template. In the fol-
lowing example, we slice through the second dimension:

set ROUTES :=
(CLEV,*,bands) FRA DET LAN STL LAF
(PITT,*,bands) FRA WIN STL FRE

(GARY,*,coils) LAN STL LAF
(CLEV,*,coils) FRA DET LAN WIN STL
(PITT,*,coils) FRE ;

Because the set contains no members with origin GARY and product bands, the template
(GARY,*,bands) is omitted.

When the set’s dimension is more than two, the slices can also be through more than
one dimension. A slice through two dimensions, in particular, naturally involves placing
two *’s in each template. Here we slice through both the first and third dimensions:

set ROUTES :=
(*,FRA,*) CLEV bands CLEV coils PITT bands
(*,DET,*) CLEV bands CLEV coils
(*,LAN,*) GARY coils CLEV bands CLEV coils
(*,WIN,*) CLEV coils PITT bands
(*,STL,*) GARY coils CLEV bands CLEV coils PITT bands
(*,FRE,*) PITT bands PITT coils
(*,LAF,*) GARY coils CLEV bands ;

Since these templates have two *’s, they must be followed by pairs of components, which
are substituted from left to right to generate the set members. For instance the template
(*,FRA,*) followed by CLEV bands specifies that (CLEV,FRA,bands) is a mem-
ber of the set.

150 SPECIFYING DATA CHAPTER 9

Any of the above forms suffices for giving the values of parameter cost as well. We
could write

param cost :=
[CLEV,*,bands] FRA 27 DET 9 LAN 12 STL 26 LAF 17
[PITT,*,bands] FRA 24 WIN 13 STL 28 FRE 99

[GARY,*,coils] LAN 11 STL 16 LAF 8
[CLEV,*,coils] FRA 23 DET 8 LAN 10 WIN 9 STL 21
[PITT,*,coils] FRE 81 ;

or

param cost :=
[*,*,bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12

CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WIN 13 PITT STL 28 PITT FRE 99

[*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WIN 9 CLEV STL 21 PITT FRE 81

or

param cost :=
CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27
CLEV FRA coils 23 CLEV LAF bands 17 CLEV LAN bands 12
CLEV LAN coils 10 CLEV STL bands 26 CLEV STL coils 21
CLEV WIN coils 9 GARY LAF coils 8 GARY LAN coils 11
GARY STL coils 16 PITT FRA bands 24 PITT FRE bands 99
PITT FRE coils 81 PITT STL bands 28 PITT WIN bands 13 ;

By placing the *’s in different positions within the templates, we can slice one-
dimensionally in any of three different ways, or two-dimensionally in any of three differ-
ent ways. (The template [*,*,*] would specify a three-dimensional list like

param cost :=
CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27
...

as already shown above.)
More generally, a template for an n-dimensional set or parameter in list form must

have n entries. Each entry is either a legal set member or a *. Templates for sets are
enclosed in parentheses (like the tuples in set-expressions) and templates for parameters
are enclosed in brackets (like the subscripts of parameters). Following a template is a
series of items, each item consisting of one set member for each *, and additionally one
parameter value in the case of a parameter template. Each item defines an n-tuple, by
substituting its set members for the *s in the template; either this tuple is added to the set
being specified, or the parameter indexed by this tuple is assigned the value in the item.

A template applies to all items between it and the next template (or the end of the data
statement). Templates having different numbers of *s may even be used together in the

SECTION 9.2 DATA IN LISTS 151

same data statement, so long as each parameter is assigned a value only once. Where no
template appears, a template of all *s is assumed.

Combined lists of sets and parameters

When we give data statements for a set and a parameter indexed over it, like

set PROD := bands coils plate ;
param rate := bands 200 coils 140 plate 160 ;

we are specifying the set’s members twice. AMPL lets us avoid this duplication by
including the set’s name in the param data statement:

param: PROD: rate := bands 200 coils 140 plate 160 ;

AMPL uses this statement to determine both the membership of PROD and the values of
rate.

Another common redundancy occurs when we need to supply data for several param-
eters indexed over the same set, such as rate, profit and market all indexed over
PROD in Figure 1-4a. Rather than write a separate data statement for each parameter,

param rate := bands 200 coils 140 plate 160 ;
param profit := bands 25 coils 30 plate 29 ;
param market := bands 6000 coils 4000 plate 3500 ;

we can combine these statements into one by listing all three parameter names after the
keyword param:

param: rate profit market :=
bands 200 25 6000 coils 140 30 4000 plate 160 29 3500 ;

Since AMPL ignores extra spaces and line breaks, we have the option of rearranging this
information into an easier-to-read table:

param: rate profit market :=
bands 200 25 6000
coils 140 30 4000
plate 160 29 3500 ;

Either way, we still have the option of adding the indexing set’s name to the statement,

param: PROD: rate profit market :=
bands 200 25 6000
coils 140 30 4000
plate 160 29 3500 ;

so that the specifications of the set and all three parameters are combined.
The same rules apply to lists of any higher-dimensional sets and the parameters

indexed over them. Thus for our two-dimensional example LINKS we could write

152 SPECIFYING DATA CHAPTER 9

param: LINKS: cost :=
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
PITT STL 28 PITT FRE 99 ;

to specify the membership of LINKS and the values of the parameter cost indexed over
it, or

param: LINKS: cost limit :=
GARY DET 14 1000
GARY LAN 11 800
GARY STL 16 1200
GARY LAF 8 1100
CLEV FRA 27 1200
CLEV DET 9 600
CLEV LAN 12 900
CLEV WIN 9 950
CLEV STL 26 1000
CLEV LAF 17 800
PITT FRA 24 1500
PITT WIN 13 1400
PITT STL 28 1500
PITT FRE 99 1200 ;

to specify the values of cost and limit together. The same options apply when tem-
plates are used, making possible further alternatives such as

param: LINKS: cost :=
[GARY,*] DET 14 LAN 11 STL 16 LAF 8
[CLEV,*] FRA 27 DET 9 LAN 12 WIN 9 STL 26 LAF 17
[PITT,*] FRA 24 WIN 13 STL 28 FRE 99 ;

and

param: LINKS: cost limit :=
[GARY,*] DET 14 1000

LAN 11 800
STL 16 1200
LAF 8 1100

[CLEV,*] FRA 27 1200
DET 9 600
LAN 12 900
WIN 9 950
STL 26 1000
LAF 17 800

[PITT,*] FRA 24 1500
WIN 13 1400
STL 28 1500
FRE 99 1200 ;

Here the membership of the indexing set is specified along with the two parameters; for
example, the template [GARY,*] followed by the set member DET and the values 14

SECTION 9.2 DATA IN LISTS 153

and 1000 indicates that (GARY,DET) is to be added to the set LINKS, that
cost[GARY,DET] has the value 14, and that limit[GARY,DET] has the value
1000.

As our illustrations suggest, the key to the interpretation of a param statement that
provides values for several parameters or for a set and parameters is in the first line,
which consists of param followed by a colon, then optionally the name of an indexing
set followed by a colon, then by a list of parameter names terminated by the := assign-
ment operator. Each subsequent item in the list consists of a number of set members
equal to the number of *s in the most recent template and then a number of parameter
values equal to the number of parameters listed in the first line.

Normally the parameters listed in the first line of a param statement are all indexed
over the same set. This need not be the case, however, as seen in the case of Figure 5-1.
For this variation on the diet model, the nutrient restrictions are given by

set MINREQ;
set MAXREQ;

param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;

so that n_min and n_max are indexed over sets of nutrients that may overlap but that are
not likely to be the same.

Our sample data for this model specifies:

set MINREQ := A B1 B2 C CAL ;
set MAXREQ := A NA CAL ;

param: n_min n_max :=
A 700 20000
C 700 .
B1 0 .
B2 0 .
NA . 50000
CAL 16000 24000 ;

Each period or dot (.) indicates to AMPL that no value is being given for the correspond-
ing parameter and index. For example, since MINREQ does not contain a member NA,
the parameter n_min[NA] is not defined; consequently a . is given as the entry for NA
and n_min in the data statement. We cannot simply leave a space for this entry, because
AMPL will take it to be 50000: data mode processing ignores all extra spaces. Nor
should we put a zero in this entry; in that case we will get a message like

error processing param n_min:
invalid subscript n_min[’NA’] discarded.

when AMPL first tries to access n_min, usually at the first solve.
When we name a set in the first line of a param statement, the set must not yet have a

value. If the specification of parameter data in Figure 5-1 had been given as

154 SPECIFYING DATA CHAPTER 9

param: NUTR: n_min n_max :=
A 700 20000
C 700 .
B1 0 .
B2 0 .
NA . 50000
CAL 16000 24000 ;

AMPL would have generated the error message

dietu.dat, line 16 (offset 366):
NUTR was defined in the model

context: param: NUTR >>> : <<< n_min n_max :=

because the declaration of NUTR in the model,

set NUTR = MINREQ union MAXREQ;

defines it already as the union of MINREQ and MAXREQ.

9.3 Data in tables

The table format of data, with indices running along the left and top edges and values
corresponding to pairs of indices, can be more concise or easier to read than the list for-
mat described in the previous section. Here we describe tables first for two-dimensional
parameters and then for slices from higher-dimensional ones. We also show how the cor-
responding multidimensional sets can be specified in tables that have entries of + or -
rather than parameter value entries.

AMPL also supports a convenient extension of the table format, in which more than
two indices may appear along the left and top edge. The rules for specifying such tables
are provided near the end of this section.

Two-dimensional tables

Data values for a parameter indexed over two sets, such as the shipping cost data from
the transportation model of Figure 3-1a:

set ORIG;
set DEST;
param cost {ORIG,DEST} >= 0;

are very naturally specified in a table (Figure 3-1b):

param cost: FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20 ;

SECTION 9.3 DATA IN TABLES 155

The row labels give the first index and the column labels the second index, so that for
example cost["GARY","FRA"] is set to 39. To enable AMPL to recognize this as a
table, a colon must follow the parameter name, while the := operator follows the list of
column labels.

For larger index sets, the columns of tables become impossible to view within the
width of a single screen or page. To deal with this situation, AMPL offers several alterna-
tives, which we illustrate on the small table above.

When only one of the index sets is uncomfortably large, the table may be transposed
so that the column labels correspond to the smaller set:

param cost (tr):
GARY CLEV PITT :=

FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WIN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 20 ;

The notation (tr) after the parameter name indicates a transposed table, in which the
column labels give the first index and the row labels the second index. When both of the
index sets are large, either the table or its transpose may be divided up in some way.
Since line breaks are ignored, each row may be divided across several lines:

param cost: FRA DET LAN WIN
STL FRE LAF :=

GARY 39 14 11 14
16 82 8

CLEV 27 9 12 9
26 95 17

PITT 24 14 17 13
28 99 20 ;

Or the table may be divided columnwise into several smaller ones:

param cost: FRA DET LAN WIN :=
GARY 39 14 11 14
CLEV 27 9 12 9
PITT 24 14 17 13

: STL FRE LAF :=
GARY 16 82 8
CLEV 26 95 17
PITT 28 99 20 ;

A colon indicates the start of each new sub-table; in this example, each has the same row
labels, but a different subset of the column labels.

In the alternative formulation of this model presented in Figure 6-2a, cost is not
indexed over all combinations of members of ORIG and DEST, but over a subset of pairs
from these sets:

156 SPECIFYING DATA CHAPTER 9

set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0;

As we have seen in Section 9.2, the membership of LINKS can be given concisely by a
list of pairs:

set LINKS :=
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE ;

Rather than being given in a similar list, the values of cost can be given in a table like
this:

param cost: FRA DET LAN WIN STL FRE LAF :=
GARY . 14 11 . 16 . 8
CLEV 27 9 12 9 26 . 17
PITT 24 . . 13 28 99 . ;

A cost value is given for all pairs that exist in LINKS, while a dot (.) serves as a
place-holder for pairs that are not in LINKS. The dot can appear in any AMPL table to
indicate ‘‘no value specified here’’.

The set LINKS may itself be given by a table that is analogous to the one for cost:

set LINKS: FRA DET LAN WIN STL FRE LAF :=
GARY - + + - + - +
CLEV + + + + + - +
PITT + - - + + + - ;

A + indicates a pair that is a member of the set, and a - indicates a pair that is not a mem-
ber. Any of AMPL’s table formats for specifying parameters can be used for sets in this
way.

Two-dimensional slices of higher-dimensional data

To provide data for parameters of more than two dimensions, we can specify the val-
ues in two-dimensional slices that are represented as tables. The rules for using slices are
much the same as for lists. As an example, consider again the three-dimensional parame-
ter cost defined by

set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;

The values for this parameter that we specified in list format in the previous section as

param cost :=
[*,*,bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12

CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WIN 13 PITT STL 28 PITT FRE 99

[*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WIN 9 CLEV STL 21 PITT FRE 81

SECTION 9.3 DATA IN TABLES 157

can instead be written in table format as

param cost :=

[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=
CLEV 27 9 12 . 26 . 17
PITT 24 . . 13 28 99 .

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY . . 11 . 16 . 8
CLEV 23 8 10 9 21 . .
PITT 81 . ;

Since we are working with two-dimensional tables, there must be two *’s in the tem-
plates. A table value’s row label is substituted for the first *, and its column label for the
second, unless the opposite is specified by (tr) right after the template. You can omit
any rows or columns that would have no significant entries, such as the row for GARY in
the [*,*,bands] table above.

As before, a dot in the table for any slice indicates a tuple that is not a member of the
table.

An analogous table to specify the set ROUTES can be constructed by putting a +
where each number appears:

set ROUTES :=

(*,*,bands): FRA DET LAN WIN STL FRE LAF :=
CLEV + + + - + - +
PITT + - - + + + -

(*,*,coils): FRA DET LAN WIN STL FRE LAF :=
GARY - - + - + - +
CLEV + + + + + - -
PITT - - - - - + - ;

Since the templates are now set templates rather than parameter templates, they are
enclosed in parentheses rather than brackets.

Higher-dimensional tables

By putting more than one index to the left of each row or at the top of each column,
you can describe multidimensional data in a single table rather than a series of slices.
We’ll continue with the three-dimensional cost data to illustrate some of the wide variety
of possibilities.

By putting the first two indices, from sets ORIG and DEST, to the left, with the third
index from set PROD at the top, we produce the following three-dimensional table of the
costs:

158 SPECIFYING DATA CHAPTER 9

param cost: bands coils :=
CLEV FRA 27 23
CLEV DET 8 8
CLEV LAN 12 10
CLEV WIN . 9
CLEV STL 26 21
CLEV LAF 17 .
PITT FRA 24 .
PITT WIN 13 .
PITT STL 28 .
PITT FRE 99 81
GARY LAN . 11
GARY STL . 16
GARY LAF . 8 ;

Putting only the first index to the left, and the second and third at the top, we arrive
instead at the following table, which for convenience we break into two pieces:

param cost: FRA DET LAN WIN STL FRE LAF
: bands bands bands bands bands bands bands :=

CLEV 27 9 12 . 26 . 17
PITT 24 . . 13 28 99 .

: FRA DET LAN WIN STL FRE LAF
: coils coils coils coils coils coils coils :=

GARY . . 11 . 16 . 8
CLEV 23 8 10 9 21 . .
PITT 81 . ;

In general a colon must precede each of the table heading lines, while a := is placed only
after the last heading line.

The indices are taken in the order that they appear, first at the left and then at the top,
if no indication is given to the contrary. As with other tables, you can add the indicator
(tr) to transpose the table, so that the indices are still taken in order but first from the
top and then from the left:

param cost (tr): CLEV CLEV CLEV CLEV CLEV CLEV
: FRA DET LAN WIN STL LAF :=

bands 27 8 12 . 26 17
coils 23 8 10 9 21 .

: PITT PITT PITT PITT GARY GARY GARY
: FRA WIN STL FRE LAN STL LAF :=

bands 24 13 28 99 . . .
coils . . . 81 11 16 8 ;

Templates can also be used to specify more precisely what goes where. For multidimen-
sional tables the template has two symbols in it, * to indicate those indices that appear at
the left and : to indicate those that appear at the top. For example the template
[*,:,*] gives a representation in which the first and third indices are at the left and the
second is at the top:

SECTION 9.3 DATA IN TABLES 159

param cost :=
[*,:,*] : FRA DET LAN WIN STL FRE LAF :=
CLEV bands 27 9 12 . 26 . 17
CLEV coils 23 8 10 9 21 . .
PITT bands 24 . . 13 28 99 .
PITT coils 81 .
GARY coils . . 11 . 16 . 8 ;

The ordering of the indices is always preserved in tables of this kind. The third index is
never correctly placed before the first, for example, no matter what transposition or tem-
plates are employed.

For parameters of four or more dimensions, the ideas of slicing and multidimensional
tables can be applied together provide an especially broad choice of table formats. If
cost were indexed over ORIG, DEST, PROD, and 1..T, for instance, then the templates
[*,:,bands,*] and [*,:,coils,*] could be used to specify two slices through
the third index, each specified by a multidimensional table with two indices at the left and
one at the top.

Choice of format

The arrangement of slices to represent multidimensional data has no effect on how the
data values are used in the model, so you can choose the most convenient format. For the
cost parameter above, it may be appealing to slice along the third dimension, so that the
data values are organized into one shipping-cost table for each product. Alternatively,
placing all of the origin-product pairs at the left gives a particularly concise representa-
tion. As another example, consider the revenue parameter from Figure 6-3:

set PROD; # products
set AREA {PROD}; # market areas for each product
param T > 0; # number of weeks

param revenue {p in PROD, AREA[p], 1..T} >= 0;

Because the index set AREA[p] is potentially different for each product p, slices through
the first (PROD) dimension are most attractive. In the sample data from Figure 6-4, they
look like this:

param T := 4 ;
set PROD := bands coils ;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;

param revenue :=
[bands,*,*]: 1 2 3 4 :=

east 25.0 26.0 27.0 27.0
north 26.5 27.5 28.0 28.5

[coils,*,*]: 1 2 3 4 :=
east 30 35 37 39
west 29 32 33 35
export 25 25 25 28 ;

160 SPECIFYING DATA CHAPTER 9

We have a separate revenue table for each product p, with market areas from AREA[p]
labeling the rows, and weeks from 1..T labeling the columns.

9.4 Other features of data statements

Additional features of the AMPL data format are provided to handle special situations.
We describe here the data statements that specify default values for parameters, that
define the membership of individual sets within an indexed collection of sets, and that
assign initial values to variables.

Default values

Data statements must provide values for exactly the parameters in your model. You
will receive an error message if you give a value for a nonexistent parameter:

error processing param cost:
invalid subscript cost[’PITT’,’DET’,’coils’] discarded.

or if you fail to give a value for a parameter that does exist:

error processing objective Total_Cost:
no value for cost[’CLEV’,’LAN’,’coils’]

The error message appears the first time that AMPL tries to use the offending parameter,
usually after you type solve.

If the same value would appear many times in a data statement, you can avoid speci-
fying it repeatedly by including a default phrase that provides the value to be used
when no explicit value is given. For example, suppose that the parameter cost above is
indexed over all possible triples:

set ORIG;
set DEST;
set PROD;

param cost {ORIG,DEST,PROD} >= 0;

but that a very high cost is assigned to routes that should not be used. This can be
expressed as

param cost default 9999 :=
[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=

CLEV 27 9 12 . 26 . 17
PITT 24 . . 13 28 99 .

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY . . 11 . 16 . 8
CLEV 23 8 10 9 21 . .
PITT 81 . ;

SECTION 9.4 OTHER FEATURES OF DATA STATEMENTS 161

Missing parameters like cost["GARY","FRA","bands"], as well as those explic-
itly marked ‘‘omitted’’ by use of a dot (like cost["GARY","FRA","coils"]), are
given the value 9999. In total, 24 values of 9999 are assigned.

The default feature is especially useful when you want all parameters of an
indexed collection to be assigned the same value. For instance, in Figure 3-2, we apply a
transportation model to an assignment problem by setting all supplies and demands to 1.
The model declares

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

but in the data we give only a default value:

param supply default 1 ;
param demand default 1 ;

Since no other values are specified, the default of 1 is automatically assigned to every ele-
ment of supply and demand.

As explained in Chapter 7, a parameter declaration in the model may include a
default expression. This offers an alternative way to specify a single default value:

param cost {ORIG,DEST,PROD} >= 0, default 9999;

If you just want to avoid storing a lot of 9999’s in a data file, however, it is better to put
the default phrase in the data statement. The default phrase should go in the
model when you want the default value to depend in some way on other data. For
instance, a different arbitrarily large cost could be given for each product by specifying:

param huge_cost {PROD} > 0;
param cost {ORIG, DEST, p in PROD} >= 0, default huge_cost[p];

A discussion of default’s relation to the = phrase in param statements is given in
Section 7.5.

Indexed collections of sets

For an indexed collection of sets, separate data statements specify the members of
each set in the collection. In the example of Figure 6-3, for example, the sets named
AREA are indexed by the set PROD:

set PROD; # products
set AREA {PROD}; # market areas for each product

The membership of these sets is given in Figure 6-4 by:

set PROD := bands coils ;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;

Any of the data statement formats for a set may be used with indexed collections of sets.
The only difference is that the set name following the keyword set is subscripted.

162 SPECIFYING DATA CHAPTER 9

As for other sets, you may specify one or more members of an indexed collection to
be empty, by giving an empty list of elements. If you want to provide a data statement
only for those members of an indexed collection that are not empty, define the empty set
as the default value in the model:

set AREA {PROD} default {};

Otherwise you will be warned about any set whose data statement is not provided.

Initial values for variables

You may optionally assign initial values to the variables of a model, using any of the
options for assigning values to parameters. A variable’s name stands for its value, and a
constraint’s name stands for the associated dual variable’s value. (See Section 12.5 for a
short explanation of dual variables.)

Any param data statement may specify initial values for variables. The variable or
constraint name is simply used in place of a parameter name, in any of the formats
described by the previous sections of this chapter. To help clarify the intent, the keyword
var may be substituted for param at the start of a data statement. For example, the fol-
lowing data table gives initial values for the variable Trans of Figure 3-1a:

var Trans: FRA DET LAN WIN STL FRE LAF :=
GARY 100 100 800 100 100 500 200
CLEV 900 100 100 500 500 200 200
PITT 100 900 100 500 100 900 200 ;

As another example, in the model of Figure 1-4, a single table can give values for the
parameters rate, profit and market, and initial values for the variables Make:

param: rate profit market Make :=
bands 200 25 6000 3000
coils 140 30 4000 2500
plate 160 29 3500 1500 ;

All of the previously described features for default values also apply to variables.
Initial values of variables (as well as the values of expressions involving these initial

values) may be viewed before you type solve, using the display, print or printf
commands described in Sections 12.1 through 12.4. Initial values are also optionally
passed to the solver, as explained in Section 14.1 and A.18.1. After a solution is
returned, the variables no longer have their initial values, but even then you can refer to
the initial values by placing an appropriate suffix after the variable’s name, as shown in
Section A.11.

The most common use of initial values is to give a good starting guess to a solver for
nonlinear optimization, which is discussed in Chapter 18.

SECTION 9.5 READING UNFORMATTED DATA: THE READ COMMAND 163

9.5 Reading unformatted data: the read command

The read command provides a particularly simple way of getting values into AMPL,
given that the values you need are listed in a regular order in a file. The file must be
unformatted in the sense that it contains nothing except the values to be read — no set or
parameter names, no colons or := operators.

In its simplest form, read specifies a list of parameters and a file from which their
values are to be read. The values in the file are assigned to the entries in the list in the
order that they appear. For example, if you want to read the number of weeks and the
hours available each week for our simple production model (Figure 4-4),

param T > 0;
param avail {1..T} >= 0;

from a file week_data.txt containing

4
40 40 32 40

then you can give the command

read T, avail[1], avail[2], avail[3], avail[4] <week_data.txt;

Or you can use an indexing expression to say the same thing more concisely and gener-
ally:

read T, {t in 1..T} avail[t] <week_data.txt;

The notation < filename specifies the name of a file for reading. (Analogously, > indi-
cates writing to a file; see A.15.)

In general, the read command has the form

read item-list < filename ;

with the item-list being a comma-separated list of items that may each be any of the fol-
lowing:

parameter
{ indexing } parameter
{ indexing } (item-list)

The first two are used in our example above, while the third allows for the same indexing
to be applied to several items. Using the same production example, to read in values for

param prodcost {PROD} >= 0;
param invcost {PROD} >= 0;
param revenue {PROD,1..T} >= 0;

from a file organized by parameters, you could read each parameter separately:

read {p in PROD} prodcost[p] < cost_data;
read {p in PROD} invcost[p] < cost_data;
read {p in PROD, t in 1..T} revenue[p,t] < cost_data;

164 SPECIFYING DATA CHAPTER 9

reading from file cost_data first all the production costs, then all the inventory costs,
and then all the revenues.

If the data were organized by product instead, you could say

read {p in PROD}
(prodcost[p], invcost[p], {t in 1..T} revenue[p,t])

<cost_data;

to read the production and inventory costs and the revenues for the first product, then for
the second product, and so forth.

A parenthesized item-list may itself contain parenthesized item-lists, so that if you
also want to read

param market {PROD,1..T} >= 0;

from the same file at the same time, you could say

read {p in PROD} (prodcost[p], invcost[p],
{t in 1..T} (revenue[p,t], market[p,t])) <cost_data;

in which case for each product you would read the two costs as before, and then for each
week the product’s revenue and market demand.

As our descriptions suggest, the form of a read statement’s item-list depends on how
the data values are ordered in the file. When you are reading data indexed over sets of
strings that, like PROD, are not inherently ordered, then the order in which values are read
is the order in which AMPL is internally representing them. If the members of the set
came directly from a set data statement, then the ordering will be the same as in the data
statement. Otherwise, it is best to put an ordered or ordered by phrase in the
model’s set declaration to ensure that the ordering is always what you expect; see Sec-
tion 5.6 for more about ordered sets.

An alternative that avoids knowing the order of the members in a set is to specify
them explicitly in the file that is read. As an example, consider how you might use a
read statement rather than a data statement to get the values from the cost parameter
of Section 9.4 that was defined as

param cost {ORIG,DEST,PROD} >= 0, default 9999;

You could set up the read statement as follows:

param ntriples integer;
param ic symbolic in ORIG;
param jc symbolic in DEST;
param kc symbolic in PROD;

read ntriples, {1..ntriples}
(ic, jc, kc, cost[ic,jc,kc]) <cost_data;

The corresponding file cost_data must begin something like this:

SECTION 9.5 READING UNFORMATTED DATA: THE READ COMMAND 165

18
CLEV FRA bands 27
PITT FRA bands 24
CLEV FRA coils 23
...

with 15 more entries needed to give all 18 data values shown in the Section 9.4 example.
Strings in a file for the read command that include any character other than letters,

digits, underscores, period, + and - must be quoted, just as for data mode. However, the
read statement itself is interpreted in model mode, so if the statement refers to any par-
ticular string, as in, say,

read {t in 1..T} revenue ["bands",t];

that string must be quoted. The filename following < need not be quoted unless it con-
tains spaces, semicolons, or nonprinting characters.

If a read statement contains no < filename , values are read from the current input
stream. Thus if you have typed the read command at an AMPL prompt, you can type
the values at subsequent prompts until all of the listed items have been assigned values.
For example:

ampl: read T, {t in 1..T} avail[t];
ampl? 4
ampl? 40 40 32 40
ampl: display avail;
avail [*] :=
1 40 2 40 3 32 4 40
;

The prompt changes from ampl? back to ampl: when all the needed input has been
read.

The filename ‘‘-’’ (a literal minus sign) is taken as the standard input of the AMPL
process; this is useful for providing input interactively.

Further uses of read within AMPL scripts, to read values directly from script files or
to prompt users for values at the command line, are described in Chapter 13.

All of our examples assume that underlying sets such as ORIG and PROD have
already been assigned values, through data statements as described earlier in this chapter,
or through other means such as database access or assignment to be described in later
chapters. Thus the read statement would normally supplement rather than replace other
input commands. It is particularly useful in handling long files of data that are generated
for certain parameters by programs outside of AMPL.

Exercises

9-1. Section 9.2 gave a variety of data statements for a three-dimensional set, ROUTES. Con-
struct some other alternatives for this set as follows:

166 SPECIFYING DATA CHAPTER 9

(a) Use templates that look like (CLEV,FRA,*).

(b) Use templates that look like (*,*,bands), with the list format.

(c) Use templates that look like (CLEV,*,*), with the table format.

(d) Specify some of the set’s members using templates with one *, and some using templates with
two *’s.

9-2. Rewrite the production model data of Figure 5-4 so that it consists of just three data state-
ments arranged as follows:

The set PROD and parameters rate, inv0, prodcost and invcost are given in one table.

The set WEEKS and parameter avail are given in one table.

The parameters revenue and market are given in one table.

9-3. For the assignment problem whose data is depicted in Figure 3-2, suppose that the only infor-
mation you receive about people’s preferences for offices is as follows:

Coullard M239 M233 D241 D237 D239
Daskin D237 M233 M239 D241 D239 C246 C140
Hazen C246 D237 M233 M239 C250 C251 D239
Hopp D237 M233 M239 D241 C251 C250
Iravani D237 C138 C118 D241 D239
Linetsky M233 M239 C250 C251 C246 D237
Mehrotra D237 D239 M239 M233 D241 C118 C251
Nelson D237 M233 M239
Smilowitz M233 M239 D239 D241 C251 C250 D237
Tamhane M239 M233 C251 C250 C118 C138 D237
White M239 M233 D237 C246

This means that, for example, Coullard’s first choice is M239, her second choice is M233, and so
on through her fifth choice, D239, but she hasn’t given any preference for the other offices.

To use this information with the transportation model of Figure 3-1a as explained in Chapter 3, you
must set cost["Coullard","M239"] to 1, cost["Coullard","M233"] to 2, and so
forth. For an office not ranked, such as C246, you can set cost["Coullard","C246"] to 99,
to indicate that it is a highly undesirable assignment.

(a) Using the list format and a default phrase, convert the information above to an appropriate
AMPL data statement for the parameter cost.

(b) Do the same, but with a table format.

9-4. Sections 9.2 and 9.3 gave a variety of data statements for a three-dimensional parameter,
cost, indexed over the set ROUTES of triples. Construct some other alternatives for this parame-
ter as follows:

(a) Use templates that look like [CLEV,FRA,*].

(b) Use templates that look like [*,*,bands], employing the list format.

(c) Use templates that look like [CLEV,*,*], employing the table format.

(d) Specify some of the parameter values using templates with one *, and some using templates
with two *’s.

9-5. For the three-dimensional parameter revenue of Figure 6-4, construct alternative data
statements as follows:

SECTION 9.5 READING UNFORMATTED DATA: THE READ COMMAND 167

(a) Use templates that look like [*,east,*], employing the table format.

(b) Use templates that look like [*,*,1], employing the table format.

(c) Use templates that look like [bands,*,1].

9-6. Given the following declarations,

set ORIG;
set DEST;
var Trans {ORIG, DEST} >= 0;

how could you use a data statement to assign an initial value of 300 to all of the Trans variables?

