Copyright© 2003by RobertFourer,David M. GayandBrian W. Kernighar

Building Larger Models

The linear programs that we have presented so far have been quite small, so their data
and solutions could fit onto a page. Most of the LPs found in practical applications, how-
ever, have hundreds or thousands of variables and constraints, and some are even larger.

How do linear programs get to be so large? They might be like the ones we have
shown, but with larger indexing sets and more data. A steel mill could be considered to
make hundreds of different products, for example, if every variation of width, thickness,
and finish is treated separately. Or a large organization could have thousands of people
involved in one assignment problem. Nevertheless, these kinds of applications are not as
common as one might expect. As a model is refined to greater levels of detail, its data
values become harder to maintain and its solutions harder to understand; past a certain
point, extra detail offers no benefit. Thus to plan production for a few lines, considerable
detail may be justifiable; but to plan for an entire company, it may be better to have a
small aggregated, plant-level model that be run many times with different scenarios.

A more common source of large linear programs is the linking together of smaller
ones. It is not unusual for an application to give rise to many simple LPs of the kinds we
have discussed before; here are three possibilities:

e Many products are to be shipped, and there is a transportation problem (as in Chap-

ter 3) for each product.

e Manufacturing is to be planned over many weeks, and there is a production prob-

lem (as in Chapter 1) for each week.

e Several products are made at several mills, and shipped to several factories; there is

a production problem for each mill, and a transportation problem for each product.
When variables or constraints are added to tie these LPs together, the result can be one
very large LP. No individual part need be particularly detailed; the size is more due to
the large number of combinations of origins, destinations, products and weeks.

This chapter shows how AMPL models might be formulated for the three situations
outlined above. The resulting models are necessarily more complicated than our previous
ones, and require the use of a few more features from the AMPL language. Since they
build on the terminology and logic of smaller models that have already been introduced,
however, these larger models are still manageable.

55

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

56 BUILDING LARGER MODELS CHAPTER 4

4.1 A multicommodity transportation model

The transportation model of the previous chapter was concerned with shipping a sin-
gle commodity from origins to destinations. Suppose now that we are shipping several
different products. We can define a new set, PROD, whose members represent the differ-
ent products, and we can add PROD to the indexing of every component in the model; the
result can be seen in Figure 4-1. Because supply, demand, cost, and Trans are
indexed over one more set in this version, they take one more subscript: supply[i,p]
for the amount of product p shipped from origin i, Trans[i, j, p] for the amount of p
shipped from i to j, and so forth. Even the check statement is now indexed over
PROD, so that it verifies that supply equals demand for each separate product.

If we look at Supply, Demand and Trans, there are (origins + destinations) X
(products) constraints in (origins) X (destinations) X (products) variables. The result
could be quite a large linear program, even if the individual sets do not have many mem-
bers. For example, 5 origins, 20 destinations and 10 products give 250 constraints in
1000 variables. The size of this LP is misleading, however, because the shipments of the
products are independent. That is, the amounts we ship of one product do not affect the
amounts we can ship of any other product, or the costs of shipping any other product. We
would do better in this case to solve a smaller transportation problem for each individual
product. In AMPL terms, we would use the simple transportation model from the previ-
ous chapter, together with a different data file for each product.

The situation would be different if some additional circumstances had the effect of
tying together the different products. As an example, imagine that there are restrictions
on the total shipments of products from an origin to a destination, perhaps because of lim-
ited shipping capacity. To accommodate such restrictions in our model, we declare a new
parameter 1imit indexed over the combinations of origins and destinations:

param limit {ORIG,DEST} >= 0;

Then we have a new collection of (origins) X (destinations) constraints, one for each ori-
gin i and destination j, which say that the sum of shipments from i to j of all products
p may not exceed limit [i,3]:

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,Jj];

Subject to these constraints (also shown in Figure 4-1), we can no longer set the amount
of one product shipped from i to j without considering the amounts of other products
also shipped from 1 to j, since it is the sum of all products that is limited. Thus we have
no choice but to solve the one large linear program.

For the steel mill in Chapter 1, the products were bands, coils, and plate. Thus the
data for the multicommodity model could look like Figure 4-2. We invoke AMPL in the
usual way to get the following solution:

ampl: model multi.mod; data multi.dat; solve;
CPLEX 8.0.0: optimal solution; objective 199500
41 dual simplex iterations (0 in phase I)

SECTION 4.1 A MULTICOMMODITY TRANSPORTATION MODEL 57

set ORIG; # origins
set DEST; # destinations
set PROD; # products

param supply {ORIG,PROD} >= 0; # amounts available at origins
param demand {DEST,PROD} >= 0; # amounts required at destinations

check {p in PROD}:
sum {i in ORIG} supplyli,p] = sum {j in DEST} demand[j,p];

param limit {ORIG,DEST} >= 0;

param cost {ORIG,DEST,PROD} >= 0; # shipment costs per unit
var Trans {ORIG,DEST,PROD} >= 0; # units to be shipped

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD}
cost[i,j,p]l * Trans[i,j,pl;

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,pl = supplyli,pl;

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[]j,p];

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,Jj];

Figure 4-1: Multicommodity transportation model (multi .mod).

ampl: display {p in PROD}: {i in ORIG, j in DEST} Trans[i,j,pl:

Trans[i,j, 'bands’] [*,*] (tr)
CLEV GARY PITT =

DET 0 0 300
FRA 225 0 75
FRE 0 0 225
LAF 225 0 25
LAN 0 0 100
STL 250 400 0
WIN 0 0 75

7

Trans[i,J, 'coils’] [*,*] (tr)
CLEV GARY PITT HE

DET 525 0 225
FRA 0 0 500
FRE 225 625 0
LAF 0 150 350
LAN 400 0 0

STL 300 25 625
WIN 150 0 100

7

58 BUILDING LARGER MODELS CHAPTER 4

set ORIG := GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF ;

set PROD := bands coils plate ;

param supply (tr): GARY CLEV PITT :=
bands 400 700 800
coils 800 1600 1800
plate 200 300 300 ;

param demand (tr):
FRA DET LAN WIN STL FRE LAF :=

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250 ;

param limit default 625 ;
param cost :=

[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=

GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15
[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17

PITT 24 14 17 13 28 99 20

[*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20 ;

Figure 4-2: Multicommodity transportation problem data (multi.dat).

Trans[i,j, 'plate’] [*,*] (tr)
CLEV GARY PITT =

DET 100 0 0
FRA 50 0 50
FRE 100 0 0
LAF 0 0 250
LAN 0 0 0
STL 0 200 0
WIN 50 0 0

7

In both our specification of the shipping costs and AMPL’s display of the solution, a
three-dimensional collection of data (that is, indexed over three sets) must be represented
on a two-dimensional screen or page. We accomplish this by ‘‘slicing’’ the data along
one index, so that it appears as a collection of two-dimensional tables. The display
command will make a guess as to the best index on which to slice, but by use of an

SECTION 4.2 A MULTIPERIOD PRODUCTION MODEL 59

set PROD; # products

param T > 0; # number of weeks

param rate {PROD} > O0; # tons per hour produced
param avail {1..T} >= 0; # hours available in week
param profit {PROD,1..T}; # profit per ton

param market {PROD,1..T} >= 0; # limit on tons sold in week

var Make {p in PROD, t in 1..T} >= 0, <= marketl[p,t];
tons produced

maximize Total_ Profit:
sum {p in PROD, t in 1..T} profit[p,t] * Makelp,t];

total profits from all products in all weeks

subject to Time {t in 1..T}:
sum {p in PROD} (l/rate[p]) * Make[p,t] <= availlt];

total of hours used by all products
may not exceed hours available, in each week

Figure 4-3: Production model replicated over periods (steelT0 .mod).

explicit indexing expression as shown above, we can tell it to display a table for each
product.

The optimal solution above ships only 25 tons of coils from GARY to STL and 25 tons
of bands from PITT to LAF. It might be reasonable to require that, if any amount at all is
shipped, it must be at least, say, 50 tons. In terms of our model, either Trans[i, j, p]
=0 or Trans[i,j,p] >= 50. Unfortunately, although it is possible to write such an
“‘either/or’’ constraint in AMPL, it is not a linear constraint, and so there is no way that an
LP solver can handle it. Chapter 20 explains how more powerful (but costlier) integer
programming techniques can deal with this and related kinds of discrete restrictions.

4.2 A multiperiod production model

Another common way in which models are expanded is by replicating them over time.
To illustrate, we consider how the model of Figure 1-4a might be used to plan production
for the next T weeks, rather than for a single week.

We begin by adding another index set to most of the quantities of interest. The added
set represents weeks numbered 1 through 7, as shown in Figure 4-3. The expression
1..Tis AMPL’s shorthand for the set of integers from 1 through T. We have replicated
all the parameters and variables over this set, except for rate, which is regarded as fixed
over time. As a result there is a constraint for each week, and the profit terms are
summed over weeks as well as products.

So far this is merely a separate LP for each week, unless something is added to tie the
weeks together. Just as we were able to find constraints that involved all the products, we

60 BUILDING LARGER MODELS CHAPTER 4

could look for constraints that involve production in all of the weeks. Most multiperiod
models take a different approach, however, in which constraints relate each week’s pro-
duction to that of the following week only.

Suppose that we allow some of a week’s production to be placed in inventory, for sale
in any later week. We thus add new decision variables to represent the amounts invento-
ried and sold in each week. The variables Make [, t] are retained, but they represent
only the amounts produced, which are now not necessarily the same as the amounts sold.
Our new variable declarations look like this:

var Make {PROD,1..T} >= 0;
var Inv {PROD,0..T} >= 0;

var Sell {p in PROD, t in 1..T} >= 0, <= marketl[p,t];

The bounds market [p, t1, which represent the maximum amounts that can be sold in
a week, are naturally transferred to Sell[p, t].

The variable Inv [p, t] will represent the inventory of product p at the end of period
t. Thus the quantities Inv[p, 0] will be the inventories at the end of week zero, or
equivalently at the beginning of the first week — in other words, now. Our model
assumes that these initial inventories are provided as part of the data:

param inv0 {PROD} >= 0;
A simple constraint guarantees that the variables Inv [p, 0] take these values:

subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];

It may seem ‘‘inefficient’” to devote a constraint like this to saying that a variable equals
a constant, but when it comes time to send the linear program to a solver, AMPL will
automatically substitute the value of invO0[p] for any occurrence of Inv([p,0]. In
most cases, we can concentrate on writing the model in the clearest or easiest way, and
leave matters of efficiency to the computer.

Now that we are distinguishing sales, production, and inventory, we can explicitly
model the contribution of each to the profit, by defining three parameters:

param revenue {PROD,1..T} >= 0;
param prodcost {PROD} >= 0;
param invcost {PROD} >= 0;

These are incorporated into the objective as follows:

maximize Total_ Profit:
sum {p in PROD, t in 1..T} (revenuelp,t]l*Sell(p,t] -
prodcost[p] *Make[p,t] - invcost[pl*Invip,t]);

As you can see, revenue [p, t] is the amount received per ton of product p sold in
week t; prodcost[p] and invcost [p] are the production and inventory carrying
cost per ton of product p in any week.

Finally, with the sales and inventories fully incorporated into our model, we can add
the key constraints that tie the weeks together: the amount of a product made available in

SECTION 4.2 A MULTIPERIOD PRODUCTION MODEL 61

a week, through production or from inventory, must equal the amount disposed of in that
week, through sale or to inventory:

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Invip,t-1] = Sell[p,t] + Invip,t];

Because the index t is from a set of numbers, the period previous to t can be written as
t-1. In fact, t can be used in any arithmetic expression; conversely, an AMPL expres-
sion such as t -1 may be used in any context where it makes sense. Notice also that for a
first-period constraint (t equal to 1), the inventory term on the left is Inv [p, 0], the ini-
tial inventory.

We now have a complete model, as shown in Figure 4-4. To illustrate a solution, we
use the small sample data file shown in Figure 4-5; it represents a four-week expansion of
the data from Figure 1-4b.

If we put the model and data into files steelT.mod and steelT.dat, then AMPL
can be invoked to find a solution:

ampl: model steelT.mod;

ampl: data steelT.dat;

ampl: solve;

MINOS 5.5: optimal solution found.
20 iterations, objective 515033

ampl: option display lcol 0;

ampl: display Make;
Make [*,*] (tr)
bands coils 1=
5990 1407
6000 1400
1400 3500
2000 4200

SR WP e

7

ampl: display Inv;

Inv [*,*] (tr)
: bands coils 1=
0 10 0
1 0 1100
2 0 0
3 0 0
4 0 0

7

ampl: display Sell;
Sell [*,*] (tr)
bands coils 1=
6000 307
6000 2500
1400 3500
2000 4200

B WN P e

62 BUILDING LARGER MODELS CHAPTER 4

set PROD; # products
param T > 0; # number of weeks

param rate {PROD} > O0;

param inv0 {PROD} >= 0;

param avail {1..T} >= 0;
param market {PROD,1..T} >= 0;

tons per hour produced
initial inventory

hours available in week
limit on tons sold in week

param prodcost {PROD} >= 0;
param invcost {PROD} >= 0;
param revenue {PROD,1..T} >= 0;

cost per ton produced
carrying cost/ton of inventory
revenue per ton sold

var Make {PROD,1..T} >= 0; tons produced
var Inv {PROD,0..T} >= 0; tons inventoried
var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t]; # tons sold

HH o FH H FHE o o H

maximize Total_ Profit:
sum {p in PROD, t in 1..T} (revenuelp,t]l*Selllp,t] -
prodcost[p] *Make[p,t] - invcost[pl*Invip,t]);

Total revenue less costs in all weeks

subject to Time {t in 1..T}:
sum {p in PROD} (l/ratelp]l) * Make[p,t] <= availlt];

Total of hours used by all products
may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[pl;
Initial inventory must equal given value

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Invip,t-1] = Sell[p,t] + Invip,t];

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 4-4: Multiperiod production model (steelT.mod).

param T := 4;
set PROD := bands coils;
param avail := 1 40 2 40 3 32 4 40 ;
param rate := Dbands 200 coils 140 ;
param inv0 := Dbands 10 coils 0 ;
param prodcost := Dbands 10 coils 11 ;
param invcost := bands 2.5 coils 3 ;
param revenue: 1 2 3 4 :=
bands 25 26 27 27
coils 30 35 37 39 ;
param market: 1 2 3 4 =

bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

Figure 4-5: Data for multiperiod production model (steelT.dat).

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 63

Production of coils in the first week is held over to be sold at a higher price in the second
week. In the second through fourth weeks, coils are more profitable than bands, and so
coils are sold up to the limit, with bands filling out the capacity. (Setting option
display_1col to zero permits this output to appear in a nicer format, as explained in
Section 12.2.)

4.3 A model of production and transportation

Large linear programs can be created not only by tying together small models of one
kind, as in the two examples above, but by linking different kinds of models. We con-
clude this chapter with an example that combines features of both production and trans-
portation models.

Suppose that the steel products are made at several mills, from which they are shipped
to customers at the various factories. For each mill we can define a separate production
model to optimize the amounts of each product to make. For each product we can define
a separate transportation model, with mills as origins and factories as destinations, to
optimize the amounts of the product to be shipped. We would like to link all these sepa-
rate models into a single integrated model of production and transportation.

To begin, we replicate the production model of Figure 1-4a over mills — that is, ori-
gins — rather than over weeks as in the previous example:

set PROD; # products

set ORIG; # origins (steel mills)

param rate {ORIG,PROD} > 0; # tons per hour at origins
param avail {ORIG} >= 0; # hours available at origins
var Make {ORIG,PROD} >= 0; # tons produced at origins

subject to Time {i in ORIG}:
sum {p in PROD} (1l/ratel[i,p]) * Makel[i,p] <= availli];

We have temporarily dropped the components pertaining to the objective, to which we
will return later. We have also dropped the market demand parameters, since the
demands are now properly associated with the destinations in the transportation models.

The next step is to replicate the transportation model, Figure 3-1a, over products, as
we did in the multicommodity example at the beginning of this chapter:

set ORIG; # origins (steel mills)
set DEST; # destinations (factories)
set PROD; # products

param supply {ORIG,PROD} >= 0; # tons available at origins
param demand {DEST,PROD} >= 0; # tons required at destinations

var Trans {ORIG,DEST,PROD} >= 0; # tons shipped

64 BUILDING LARGER MODELS CHAPTER 4

set ORIG; # origins (steel mills)

set DEST; # destinations (factories)

set PROD; # products

param rate {ORIG,PROD} > 0; # tons per hour at origins
param avail {ORIG} >= 0; # hours available at origins

param demand {DEST,PROD} >= 0; # tons required at destinations

param make_cost {ORIG,PROD} >= 0; # manufacturing cost/ton
param trans_cost {ORIG,DEST,PROD} >= 0; # shipping cost/ton

var Make {ORIG,PROD} >= 0; # tons produced at origins
var Trans {ORIG,DEST,PROD} >= 0; # tons shipped

minimize Total_Cost:
sum {i in ORIG, p in PROD} make_cost[i,p] * Makel[i,p] +
sum {i in ORIG, j in DEST, p in PROD}
trans_cost[i,j,p] * Transl[i,Jj,pl;

subject to Time {i in ORIG}:
sum {p in PROD} (l/ratel[i,p]) * Makel[i,p] <= availlil;

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = Makel[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

Figure 4-6: Production/transportation model, 3rd version (steelP.mod).

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,Jj,p] = supplyli,p]l;

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans([i,j,p] = demand[j,p];

Comparing the resulting production and transportation models, we see that the sets of ori-
gins (ORIG) and products (PROD) are the same in both models. Moreover, the ‘‘tons
available at origins’’ (supply) in the transportation model are really the same thing as
the ‘‘tons produced at origins’’ (Make) in the production model, since the steel available
for shipping will be whatever is made at the mill.

We can thus merge the two models, dropping the definition of supply and substitut-
ing Make[i,p] for the occurrence of supply[i,p]l:

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = Makel[i,pl;

There are several ways in which we might add an objective to complete the model. Per-
haps the simplest is to define a cost per ton corresponding to each variable. We define a
parameter make_cost so that there is a term make_cost[1i,p] * Make[i,p] in
the objective for each origin 1 and product p; and we define trans_cost so that there
isaterm trans_cost[i,Jj,p] * Trans[1i, J,p] in the objective for each origin i,
destination j and product p. The full model is shown in Figure 4-6.

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 65
set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;

param avail
param demand
bands

coils
plate

param rate

(tr
FRA
300
500
100

(tr) :

bands
coils
plate

param make_cost

bands
coils
plate

param trans_cost

[*,*,bands] :
GARY
CLEV
PITT

[*,*,coils]:
GARY
CLEV
PITT

[*,*,plate]:
GARY
CLEV
PITT

Figure 4-7: Data for production/transportation model (steelP.dat).

F

F

F

GARY 20

) :
DET
300
750
100

GARY
200
140
160

(tr) :
GARY
180
170
180

RA DET
30 10
22 7
19 11

RA DET
39 14
27 9
24 14

RA DET
41 15
29 9
26 14

CLEV

LAN
100
400

0

CLEV
190
130
160

CLEV
190
170
185

LAN
8
10
12

LAN
11
12
17

LAN
12
13
17

15 PITT 20 ;
WIN STL
75 650
250 950
50 200
PITT :=
230
160
170 ;
PITT :=
190
180
185 ;
WIN STL FRE
10 11 71
7 21 82
10 25 83
WIN STL FRE
14 16 82
9 26 95
13 28 99
WIN STL FRE
16 17 86
9 28 99
13 31 104

FRE
225
850
100

LAF
6
13
15

LAF
8
17
20

LAF
8
18
20

LAF
250
500
250

7

7

Reviewing this formulation, we might observe that, according to the Supply decla-
ration, the nonnegative expression

sum {j in DEST} Trans[i,]j,p]

can be substituted for Make[i, p].
Make[1i,p] in the objective and in the Time constraints, we no longer need to include
the Make variables or the Supply constraints in our model, and our linear programs will
be smaller as a result. Nevertheless, in most cases we will be better off leaving the model
as it is shown above. By ‘‘substituting out’’ the Make variables we render the model
harder to read, and not a great deal easier to solve.

If we make this substitution for all occurrences of

66 BUILDING LARGER MODELS CHAPTER 4

As an instance of solving a linear program based on this model, we can adapt the data
from Figure 4-2, as shown in Figure 4-7. Here are some representative result values:

ampl: model steelP.mod; data steelP.dat; solve;
CPLEX 8.0.0: optimal solution; objective 1392175
27 dual simplex iterations (0 in phase I)

ampl: option display lcol 5;
ampl: option omit_zero rows 1, omit_zero cols 1;

ampl: display Make;

Make [*,*]

: bands coils plate 1=
CLEV 0 1950 0

GARY 1125 1750 300

PITT 775 500 500

’

ampl: display Trans;
Trans [CLEV, *, *]

coils 1=
DET 750
LAF 500
LAN 400
STL 50
WIN 250
[GARY, *, *]

bands coils plate 1=
FRE 225 850 100
LAF 250 0 0
STL 650 900 200

[PITT, *, *]
bands coils plate :=
DET 300 0 100
FRA 300 500 100
LAF 0 0 250
LAN 100 0 0
WIN 75 0 50

ampl: display Time;
Time [*] :=
CLEV -1300
GARY -2800

7

As one might expect, the optimal solution does not ship all products from all mills to all
factories. We have used the options omit_zero_rows and omit_zero_cols to
suppress the printing of table rows and columns that are all zeros. The dual values for
Time show that additional capacity is likely to have the greatest impact on total cost if it
is placed at GARY, and no impact if it is placed at PITT.

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 67

We can also investigate the relative costs of production and shipping, which are the
two components of the objective:

ampl: display sum {i in ORIG, p in PROD}
make_cost[i,p] * Make[i,p];
sum{i in ORIG, p in PROD} make_cost[i,p]*Make[i,p] = 1215250

ampl: display sum {i in ORIG, j in DEST, p in PROD}
trans_cost[i,j,p]l] * Trans[i,7,pl:;
sum{i in ORIG, j in DEST, p in PROD}
trans_cost[i,j,pl*Trans[i,j,p]l = 176925

Clearly the production costs dominate in this case. These examples point up the ability of
AMPL to evaluate and display any valid expression.

Bibliography

H. P. Williams, Model Building in Mathematical Programming (4th edition). John Wiley & Sons
(New York, 1999). An extended compilation of many kinds of models and combinations of them.

Exercises

4-1. Formulate a multi-period version of the transportation model, in which inventories are kept at
the origins.

4-2. Formulate a combination of a transportation model for each of several foods, and a diet
model at each destination.

4-3. The following questions pertain to the multiperiod production model and data of Section 4.2.

(a) Display the marginal values associated with the constraints Time [t]. In which periods does it
appear that additional production capacity would be most valuable?

(b) By soliciting additional sales, you might be able to raise the upper bounds market [p, t].
Display the reduced costs Sell[p, t].rc, and use them to suggest whether you would prefer to
go after more orders of bands or of coils in each week.

(c) If the inventory costs are all positive, any optimal solution will have zero inventories after the
last week. Why is this so?

This phenomenon is an example of an ‘‘end effect’’. Because the model comes to an end after
period T, the solution tends to behave as if production is to be shut down after that point. One way
of dealing with end effects is to increase the number of weeks modeled; then the end effects should
have little influence on the solution for the earlier weeks. Another approach is to modify the model
to better reflect the realities of inventories. Describe some modifications you might make to the
constraints, and to the objective.

4-4. A producer of packaged cookies and crackers runs several shifts each month at its large bak-
ery. This exercise is concerned with a multiperiod planning model for deciding how many crews
to employ each month. In the algebraic description of the model, there are sets S of shifts and P of

68 BUILDING LARGER MODELS CHAPTER 4

products, and the planning horizon is T four-week periods. The relevant operational data are as
follows:

/ number of production lines: maximum number of crews that can work in any shift
r, production rate for product p, in crew-hours per 1000 boxes
h, number of hours that a crew works in planning period ¢

The following data are determined by market or managerial considerations:

w, total wages for a crew on shift s in one period
d,, demand for product p that must be met in period ¢
M maximum change in number of crews employed from one period to the next

The decision variables of the model are:

X, 2d, total boxes (in 1000s) of product p baked in period ¢
0 £ Y, <! number of crews employed on shift s in period ¢

The objective is to minimize the total cost of all crews employed,

T

w,Y,, .
ses &di=1" 5"t

Total hours required for production in each period may not exceed total hours available from all
shifts,
Y r,X Sh,ZsesYS,,foreachtzl,...,T.

peP Pt
The change in number of crews is restricted by

-M < ZSES(YUH—YS,) < M, foreachr=1,..,T—1.

As required by the definition of M, this constraint restricts any change to lie between a reduction of
M crews and an increase of M crews.

(a) Formulate this model in AMPL, and solve the following instance. There are 7= 13 periods, / =8
production lines, and a maximum change of M =3 crews per period. The products are 18REG,
24REG, and 24PRO, with production rates r, of 1.194, 1.509 and 1.509 respectively. Crews work
either a day shift with wages w of $44,900, or a night shift with wages $123,100. The demands
and working hours are given as follows by period:

Period ¢ d\srec. dosrec. drupro.s h,
1 63.8 1212.0 0.0 156
2 76.0 306.2 0.0 152
3 38.4 319.0 0.0 160
4 913.8 208.4 0.0 152
5 115.0 298.0 0.0 156
6 133.8 328.2 0.0 152
7 79.6 959.6 0.0 152
8 111.0 257.6 0.0 160
9 121.6 335.6 0.0 152

10 470.0 118.0 1102.0 160
11 78.4 284.8 0.0 160
12 99.4 970.0 0.0 144

13 140.4 343.8 0.0 144

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 69

Display the numbers of crews required on each shift. You will find many fractional numbers of
crews; how would you convert this solution to an optimal one in whole numbers?

(b) To be consistent, you should also require at most a change of M between the known initial
number of crews (already employed in the period before the first) and the number of crews to be
employed in the first planning period. Add a provision for this restriction to the model.

Re-solve with 11 initial crews. You should get the same solution.

(c) Because of the limit on the change in crews from period to period, more crews than necessary
are employed in some periods. One way to deal with this is to carry inventories from one period to
the next, so as to smooth out the amount of production required in each period. Add a variable for
the amount of inventory of each product after each period, as in the model of Figure 4-4, and add
constraints that relate inventory to production and demand. (Because inventories can be carried
forward, production X, need not be = demand d,, in every period as required by the previous ver-
sions.) Also make a provision for setting initial inventories to zero. Finally, add an inventory cost
per period per 1000 boxes to the objective.

Let the inventory costs be $34.56 for product 18REG, and $43.80 for 24REG and 24PRO. Solve
the resulting linear program; display the crew sizes and inventory levels. How different is this
solution? How much of a saving is achieved in labor cost, at how much expense in inventory cost?

(d) The demands in the given data peak at certain periods, when special discount promotions are in
effect. Big inventories are built up in advance of these peaks, particularly before period 4. Baked
goods are perishable, however, so that building up inventories past a certain number of periods is
unrealistic.

Modify the model so that the inventory variables are indexed by product, period and age, where
age runs from 1 to a specified limit A. Add constraints that the inventories of age 1 after any
period cannot exceed the amounts just produced, and that inventories of age a >1 after period ¢
cannot exceed the inventories of age a — 1 after period 7 —1.

Verify that, with a maximum inventory age of 2 periods, you can use essentially the same solution
as in (c), but that with a maximum inventory age of 1 there are some periods that require more
Crews.

(e) Suppose now that instead of adding a third index on inventory variables as in (d), you impose
the following inventory constraint: The amount of product p in inventory after period ¢ may not
exceed the total production of product p in periods # —A + 1 through z.

Explain why this constraint is sufficient to prevent any inventory from being more than A periods
old, provided that inventories are managed on a first-in, first-out basis. Support your conclusion
by showing that you get the same results as in (d) when solving with a maximum inventory age of
2orof 1.

(f) Explain how you would modify the models in (c), (d), and (e) to account for initial inventories
that are not zero.

4-5. Multiperiod linear programs can be especially difficult to develop, because they require data
pertaining to the future. To hedge against the uncertainty of the future, a user of these LPs typi-
cally develops various scenarios, containing different forecasts of certain key parameters. This
exercise asks you to develop what is known as a stochastic program, which finds a solution that can
be considered robust over all scenarios.

(a) The revenues per ton might be particularly hard to predict, because they depend on fluctuating
market conditions. Let the revenue data in Figure 4-5 be scenario 1, and also consider scenario 2:

70 BUILDING LARGER MODELS CHAPTER 4

param revenue: 1 2 3 4 :=
bands 23 24 25 25
coils 30 33 35 36 ;

and scenario 3:

param revenue: 1 2 3 4 :=
bands 21 27 33 35
coils 30 32 33 33 ;

By solving the three associated linear programs, verify that each of these scenarios leads to a dif-
ferent optimal production and sales strategy, even for the first week. You need one strategy, how-
ever, not three. The purpose of the stochastic programming approach is to determine a single solu-
tion that produces a good profit ‘‘on average’’ in a certain sense.

(b) As a first step toward formulating a stochastic program, consider how the three scenarios could
be brought together into one linear program. Define a parameter S as the number of scenarios, and
replicate the revenue data over the set 1. . S:

param S > 0;
param revenue {PROD,1..T,1..S} >= 0;

Replicate all the variables and constraints in a similar way. (The idea is the same as earlier in this
chapter, where we replicated model components over products or weeks.)

Define a new collection of parameters prob [s], to represent your estimate of the probability that
a scenario s takes place:

param prob {1..8} >= 0, <= 1;
check: 0.99999 < sum {s in 1..S} probls] < 1.00001;

The objective function is the expected profit, which equals the sum over all scenarios of the proba-
bility of each scenario times the optimum profit under that scenario:
maximize Expected_Profit:
sum {s in 1..S} probl[s] *
sum {p in PROD, t in 1..T} (revenuelp,t,s]*Selllp,t,s] -
prodcost [p] *Make[p, t,s] - invcost[p]*Invip,t,s]);

Complete the formulation of this multiscenario linear program, and put together the data for it. Let
the probabilities of scenarios 1, 2 and 3 be 0.45, 0.35 and 0.20, respectively. Show that the solu-
tion consists of a production strategy for each scenario that is the same as the strategy in (a).

(c) The formulation in (b) is no improvement because it makes no connection between the scenar-
i0s. One way to make the model usable is to add ‘‘nonanticipativity’’ constraints that require each
week-1 variable to be given the same value across all scenarios. Then the result will give you the
best single strategy for the first week, in the sense of maximizing expected profit for all weeks.
The strategies will still diverge after the first week — but a week from now you can update your
data and run the stochastic program again to generate a second week’s strategy.

A nonanticipativity constraint for the Make variables can be written
subject to Make_na {p in PROD, s in 1..S-1}:
Make[p,1,s] = Make[p,1,s+1];
Add the analogous constraints for the Inv and Sell variables. Solve the stochastic program, and
verify that the solution consists of a single period-1 strategy for all three scenarios.

(d) After getting your solution in (c), use the following command to look at the profits that the rec-
ommended strategy will achieve under the three scenarios:

SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 71

display {s in 1..S}
sum {p in PROD, t in 1..T} (revenuelp,t,s]*Selllp,t,s] -
prodcost [p] *Make[p, t,s] - invcost[pl*Invip,t,s]);

Which scenario will be most profitable, and which will be least profitable?

Repeat the analysis with probabilities of 0.0001, 0.0001 and 0.9998 for scenarios 1, 2 and 3. You
should find that profit from strategy 3 goes up, but profits from the other two go down. Explain
what these profits represent, and why the results are what you would expect.

