
13
________________________________________________________________________________________________

Command Scripts

You will probably find that your most intensive use of AMPL’s command environ-
ment occurs during the initial development of a model, when the results are unfamiliar
and changes are frequent. When the formulation eventually settles down, you may find
yourself typing the same series of commands over and over to solve for different collec-
tions of data. To accelerate this process, you can arrange to have AMPL read often-used
sequences of commands from files or to repeat command sequences automatically, deter-
mining how to proceed and when to stop on the basis of intermediate results.

A script is a sequence of commands, captured in a file, to be used and re-used.
Scripts can contain any AMPL commands, and may include programming language con-
structs like for, repeat, and if to repeat statements and perform them conditionally.
In effect, these and related commands let you write small programs in the AMPL com-
mand language. Another collection of commands permit stepping through a script for
observation or debugging. This chapter introduces AMPL command scripts, using for-
matted printing and sensitivity analysis as examples.

AMPL command scripts are able to work directly with the sets of character strings that
are central to the definition of models. A for statement can specify commands to be
executed once for each member of some set, for example. To support scripts that work
with strings, AMPL provides a variety of string functions and operators, whose use is
described in the last section of this chapter.

13.1 Running scripts: include and commands

AMPL provides several commands that cause input to be taken from a file. The com-
mand

include filename

is replaced by the contents of the named file. An include can even appear in the mid-
dle of some other statement, and does not require a terminating semicolon.

255

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text



256 COMMAND SCRIPTS CHAPTER 13

The model and data commands that appear in most of our examples are special
cases of include that put the command interpreter into model or data mode before
reading the specified file. By contrast, include leaves the mode unchanged. To keep
things simple, the examples in this book always assume that model reads a file of model
declarations, and that data reads a file of data values. You may use any of model,
data and include to read any file, however; the only difference is the mode that is set
when reading starts. Working with a small model, for example, you might find it conve-
nient to store in one file all the model declarations, a data command, and all the data
statements; either a model or an include command could read this file to set up both
model and data in one operation.

As an illustration, if the file dietu.run contains

model dietu.mod;
data dietu.dat;
solve;
option display_1col 5;
option display_round 1;
display Buy;

then including it will load the model and data, run the problem, and display the optimal
values of the variables:

ampl: include dietu.run;
MINOS 5.5: optimal solution found.
6 iterations, objective 74.27382022

Buy [*] :=
BEEF 2.0 FISH 2.0 MCH 2.0 SPG 5.3
CHK 10.0 HAM 2.0 MTL 6.2 TUR 2.0
;

When an included file itself contains an include, model or data command, reading
of the first file is suspended while the contents of the contained file are included. In this
example, the command include dietu.run causes the subsequent inclusion of the
files dietu.mod and dietu.dat.

One particularly useful kind of include file contains a list of option commands
that you want to run before any other commands, to modify the default options. You can
arrange to include such a file automatically at startup; you can even have AMPL write
such a file automatically at the end of a session, so that your option settings will be
restored the next time around. Details of this arrangement depend on your operating sys-
tem; see Sections A.14.1 and A.23.

The statement

commands filename ;

is very similar to include, but is a true statement that needs a terminating semicolon
and can only appear in a context where a statement is legal.

To illustrate commands, consider how we might perform a simple sensitivity analy-
sis on the multi-period production problem of Section 4.2. Only 32 hours of production



SECTION 13.1 RUNNING SCRIPTS: INCLUDE AND COMMANDS 257

time are available in week 3, compared to 40 hours in the other weeks. Suppose that we
want to see how much extra profit could be gained for each extra hour in week 3. We can
accomplish this by repeatedly solving, displaying the solution values, and increasing
avail[3]:

ampl: model steelT.mod;
ampl: data steelT.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
ampl: display Total_Profit >steelT.sens;
ampl: option display_1col 0;
ampl: option omit_zero_rows 0;
ampl: display Make >steelT.sens;
ampl: display Sell >steelT.sens;
ampl: option display_1col 20;
ampl: option omit_zero_rows 1;
ampl: display Inv >steelT.sens;

ampl: let avail[3] := avail[3] + 5;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
ampl: display Total_Profit >steelT.sens;
ampl: option display_1col 0;
ampl: option omit_zero_rows 0;
ampl: display Make >steelT.sens;
ampl: display Sell >steelT.sens;
ampl: option display_1col 20;
ampl: option omit_zero_rows 1;
ampl: display Inv >steelT.sens;

ampl: let avail[3] := avail[3] + 5;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
ampl:

To continue trying values of avail[3] in steps of 5 up to say 62, we must complete
another four solve cycles in the same way. We can avoid having to type the same com-
mands over and over by creating a new file containing the commands to be repeated:

solve;
display Total_Profit >steelT.sens;
option display_1col 0;
option omit_zero_rows 0;
display Make >steelT.sens;
display Sell >steelT.sens;
option display_1col 20;
option omit_zero_rows 1;
display Inv >steelT.sens;
let avail[3] := avail[3] + 5;



258 COMMAND SCRIPTS CHAPTER 13

If we call this file steelT.sa1, we can execute all the commands in it by typing the
single line commands steelT.sa1:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl:

(All output from the display command is redirected to the file steelT.sens,
although we could just as well have made it appear on the screen.)

In this and many other cases, you can substitute include for commands. In gen-
eral it is best to use commands within command scripts, however, to avoid unexpected
interactions with repeat, for and if statements.

13.2 Iterating over a set: the for statement

The examples above still require that some command be typed repeatedly. AMPL pro-
vides looping commands that can do this work automatically, with various options to
determine how long the looping should continue.

We begin with the for statement, which executes a statement or collection of state-
ments once for each member of some set. To execute our multi-period production prob-
lem sensitivity analysis script four times, for example, we can use a single for statement
followed by the command that we want to repeat:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: for {1..4} commands steelT.sa1;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl:



SECTION 13.2 ITERATING OVER A SET: THE FOR STATEMENT 259

The expression between for and the command can be any AMPL indexing expression.
As an alternative to taking the commands from a separate file, we can write them as

the body of a for statement, enclosed in braces:

model steelT.mod;
data steelT.dat;

for {1..4} {
solve;
display Total_Profit >steelT.sens;
option display_1col 0;
option omit_zero_rows 0;
display Make >steelT.sens;
display Sell >steelT.sens;
option display_1col 20;
option omit_zero_rows 1;
display Inv >steelT.sens;
let avail[3] := avail[3] + 5;

}

If this script is stored in steelT.sa2, then the whole iterated sensitivity analysis is car-
ried out by typing

ampl: commands steelT.sa2

This approach tends to be clearer and easier to work with, particularly as we make the
loop more sophisticated. As a first example, consider how we would go about compiling
a table of the objective and the dual value on constraint Time[3], for successive values
of avail[3]. A script for this purpose is shown in Figure 13-1. After the model and
data are read, the script provides additional declarations for the table of values:

set AVAIL3;
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};

The set AVAIL3 will contain all the different values for avail[3] that we want to try;
for each such value a, avail3_obj[a] and avail3_dual[a] will be the associ-
ated objective and dual values. Once these are set up, we assign the set value to
AVAIL3:

let AVAIL3 := avail[3] .. avail[3] + 15 by 5;

and then use a for loop to iterate over this set:

for {a in AVAIL3} {
let avail[3] := a;
solve;
let avail3_obj[a] := Total_Profit;
let avail3_dual[a] := Time[3].dual;

}

We see here that a for loop can be over an arbitrary set, and that the index running over
the set (a in this case) can be used in statements within the loop. After the loop is com-



260 COMMAND SCRIPTS CHAPTER 13

________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

model steelT.mod;
data steelT.dat;
option solver_msg 0;

set AVAIL3;
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
let AVAIL3 := avail[3] .. avail[3] + 15 by 5;

for {a in AVAIL3} {
let avail[3] := a;
solve;
let avail3_obj[a] := Total_Profit;
let avail3_dual[a] := Time[3].dual;

}
display avail3_obj, avail3_dual;

Figure 13-1: Parameter sensitivity script (steelT.sa3).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

plete, the desired table is produced by displaying avail3_obj and avail3_dual, as
shown at the end of the script in Figure 13-1. If this script is stored in steelT.sa3,
then the desired results are produced with a single command:

ampl: commands steelT.sa3;
: avail3_obj avail3_dual :=
32 515033 3400
37 532033 3400
42 549033 3400
47 565193 2980
;

In this example we have suppressed the messages from the solver, by including the com-
mand option solver_msg 0 in the script.

AMPL’s for loops are also convenient for generating formatted tables. Suppose that
after solving the multi-period production problem, we want to display sales both in tons
and as a percentage of the market limit. We could use a display command to produce
a table like this:

ampl: display {t in 1..T, p in PROD}
ampl? (Sell[p,t], 100*Sell[p,t]/market[p,t]);
: Sell[p,t] 100*Sell[p,t]/market[p,t] :=
1 bands 6000 100
1 coils 307 7.675
2 bands 6000 100
2 coils 2500 100
3 bands 1400 35
3 coils 3500 100
4 bands 2000 30.7692
4 coils 4200 100
;



SECTION 13.2 ITERATING OVER A SET: THE FOR STATEMENT 261

By writing a script that uses the printf command (A.16), we can create a much more
effective table:

ampl: commands steelT.tab1;
SALES bands coils
week 1 6000 100.0% 307 7.7%
week 2 6000 100.0% 2500 100.0%
week 3 1399 35.0% 3500 100.0%
week 4 1999 30.8% 4200 100.0%

The script to write this table can be as short as two printf commands:

printf "\n%s%14s%17s\n", "SALES", "bands", "coils";
printf {t in 1..T}: "week %d%9d%7.1f%%%9d%7.1f%%\n", t,

Sell["bands",t], 100*Sell["bands",t]/market["bands",t],
Sell["coils",t], 100*Sell["coils",t]/market["coils",t];

This approach is undesirably restrictive, however, because it assumes that there will
always be two products and that they will always be named coils and bands. In fact
the printf statement cannot write a table in which both the number of rows and the
number of columns depend on the data, because the number of entries in its format string
is always fixed.

A more general script for generating the table is shown in Figure 13-2. Each pass
through the ‘‘outer’’ loop over {1..T} generates one row of the table. Within each
pass, an ‘‘inner’’ loop over PROD generates the row’s product entries. There are more
printf statements than in the previous example, but they are shorter and simpler. We
use several statements to write the contents of each line; printf does not begin a new
line except where a newline (\n) appears in its format string.

Loops can be nested to any depth, and may be iterated over any set that can be repre-
sented by an AMPL set expression. There is one pass through the loop for every member
of the set, and if the set is ordered — any set of numbers like 1..T, or a set declared
ordered or circular — the order of the passes is determined by the ordering of the
set. If the set is unordered (like PROD) then AMPL chooses the order of the passes, but
________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

printf "\nSALES";
printf {p in PROD}: "%14s ", p;
printf "\n";
for {t in 1..T} {

printf "week %d", t;
for {p in PROD} {

printf "%9d", Sell[p,t];
printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];

}
printf "\n";

}

Figure 13-2: Generating a formatted sales table with nested loops (steelT.tab1).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________



262 COMMAND SCRIPTS CHAPTER 13

the choice is the same every time; the Figure 13-2 script relies on this consistency to
ensure that all of the entries in one column of the table refer to the same product.

13.3 Iterating subject to a condition: the repeat statement

A second kind of looping construct, the repeat statement, continues iterating as
long as some logical condition is satisfied.

Returning to the sensitivity analysis example, we wish to take advantage of a property
of the dual value on the constraint Time[3]: the additional profit that can be realized
from each extra hour added to avail[3] is at most Time[3].dual. When
avail[3] is made sufficiently large, so that there is more third-week capacity than can
be used, the associated dual value falls to zero and further increases in avail[3] have
no effect on the optimal solution.

We can specify that looping should stop once the dual value falls to zero, by writing a
repeat statement that has one of the following forms:

repeat while Time[3].dual > 0 { . . . };
repeat until Time[3].dual = 0 { . . . };
repeat { . . . } while Time[3].dual > 0;
repeat { . . . } until Time[3].dual = 0;

The loop body, here indicated by {...}, must be enclosed in braces. Passes through the
loop continue as long as the while condition is true, or as long as the until condition
is false. A condition that appears before the loop body is tested before every pass; if a
while condition is false or an until condition is true before the first pass, then the
loop body is never executed. A condition that appears after the loop body is tested after
every pass, so that the loop body is executed at least once in this case. If there is no
while or until condition, the loop repeats indefinitely and must be terminated by
other means, like the break statement described below.

A complete script using repeat is shown in Figure 13-3. For this particular applica-
tion we choose the until phrase that is placed after the loop body, as we do not want
Time[3].dual to be tested until after a solve has been executed in the first pass.
Two other features of this script are worth noting, as they are relevant to many scripts of
this kind.

At the beginning of the script, we don’t know how many passes the repeat state-
ment will make through the loop. Thus we cannot determine AVAIL3 in advance as we
did in Figure 13-1. Instead, we declare it initially to be the empty set:

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};

and add each new value of avail[3] to it after solving:



SECTION 13.3 ITERATING SUBJECT TO A CONDITION: THE REPEAT STATEMENT 263

________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

model steelT.mod;
data steelT.dat;

option solution_precision 10;
option solver_msg 0;

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
param avail3_step := 5;

repeat {
solve;
let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj[avail[3]] := Total_Profit;
let avail3_dual[avail[3]] := Time[3].dual;
let avail[3] := avail[3] + avail3_step;

} until Time[3].dual = 0;

display avail3_obj, avail3_dual;

Figure 13-3: Script for recording sensitivity (steelT.sa4).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj[avail[3]] := Total_Profit;
let avail3_dual[avail[3]] := Time[3].dual;

By adding a new member to AVAIL3, we also create new components of the parameters
avail3_obj and avail3_dual that are indexed over AVAIL3, and so we can pro-
ceed to assign the appropriate values to these components. Any change to a set is propa-
gated to all declarations that use the set, in the same way that any change to a parameter
is propagated.

Because numbers in the computer are represented with a limited number of bits of
precision, a solver may return values that differ very slightly from the solution that would
be computed using exact arithmetic. Ordinarily you don’t see this, because the dis-
play command rounds values to six significant digits by default. For example:

ampl: model steelT.mod; data steelT.dat; solve;
ampl: display Make;
Make [*,*] (tr)
: bands coils :=
1 5990 1407
2 6000 1400
3 1400 3500
4 2000 4200
;

Compare what is shown when rounding is dropped, by setting display_precision
to 0:



264 COMMAND SCRIPTS CHAPTER 13

ampl: option display_precision 0;
ampl: display Make;
Make [*,*] (tr)
: bands coils :=
1 5989.999999999999 1407.0000000000002
2 6000 1399.9999999999998
3 1399.9999999999995 3500
4 1999.9999999999993 4200
;

These seemingly tiny differences can have undesirable effects whenever a script makes a
comparison that uses values returned by the solver. The rounded table would lead you to
believe that Make["coils",2] >= 1400 is true, for example, whereas from the sec-
ond table you can see that really it is false.

You can avoid this kind of surprise by writing arithmetic tests more carefully; instead
of until Time[3].dual = 0, for instance, you might say until Time[3].dual
<= 0.0000001. Alternatively, you can round all solution values that are returned by
the solver, so that numbers that are supposed to be equal really do come out equal. The
statement

option solution_precision 10;

toward the beginning of Figure 13-3 has this effect; it states that solution values are to be
rounded to 10 significant digits. This and related rounding options are discussed and
illustrated in Section 12.3.

Note finally that the script declares set AVAIL3 as default {} rather than = {}.
The former allows AVAIL3 to be changed by let commands as the script proceeds,
whereas the latter permanently defines AVAIL3 to be the empty set.

13.4 Testing a condition: the if-then-else statement

In Section 7.3 we described the conditional (if-then-else) expression, which pro-
duces an arithmetic or set value that can be used in any expression context. The if-
then-else statement uses the same syntactic form to conditionally control the execu-
tion of statements or groups of statements.

In the simplest case, the if statement evaluates a condition and takes a specified
action if the condition is true:

if Make["coils",2] < 1500 then printf "under 1500\n";

The action may also be a series of commands grouped by braces as in the for and
repeat commands:

if Make["coils",2] < 1500 then {
printf "Fewer than 1500 coils in week 2.\n";
let market["coils",2] := market["coils",2] * 1.1;

}



SECTION 13.4 TESTING A CONDITION: THE IF-THEN-ELSE STATEMENT 265

An optional else specifies an alternative action that also may be a single command:

if Make["coils",2] < 1500 then {
printf "Fewer than 1500 coils in week 2.\n";
let market["coils",2] := market["coils",2] * 1.1;

}
else

printf "At least 1500 coils in week 2.\n";

or a group of commands:

if Make["coils",2] < 1500 then
printf "under 1500\n";

else {
printf "at least 1500\n";
let market["coils",2] := market["coils",2] * 0.9;

}

AMPL executes these commands by first evaluating the logical expression following if.
If the expression is true, the command or commands following then are executed. If the
expression is false, the command or commands following else, if any, are executed.

The if command is most useful for regulating the flow of control in scripts. In Fig-
ure 13-2, we could suppress any occurrences of 100% by placing the statement that prints
Sell[p,t]/market[p,t] inside an if:

if Sell[p,t] < market[p,t] then
printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];

else
printf " --- ";

In the script of Figure 13-3, we can use an if command inside the repeat loop to test
whether the dual value has changed since the previous pass through the loop, as shown in
the script of Figure 13-4. This loop creates a table that has exactly one entry for each dif-
ferent dual value discovered.

The statement following then or else can itself be an if statement. In the format-
ting example (Figure 13-2), we could handle both 0% and 100% specially by writing

if Sell[p,t] < market[p,t] then
if Sell[p,t] = 0 then

printf " ";
else

printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];
else

printf " --- ";

or equivalently, but perhaps more clearly,

if Sell[p,t] = 0 then
printf " ";

else if Sell[p,t] < market[p,t] then
printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];

else
printf " --- ";



266 COMMAND SCRIPTS CHAPTER 13

________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

model steelT.mod; data steelT.dat;
option solution_precision 10; option solver_msg 0;

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};

let avail[3] := 1;
param avail3_step := 1;
param previous_dual default Infinity;

repeat while previous_dual > 0 {
solve;
if Time[3].dual < previous_dual then {

let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj[avail[3]] := Total_Profit;
let avail3_dual[avail[3]] := Time[3].dual;
let previous_dual := Time[3].dual;

}
let avail[3] := avail[3] + avail3_step;

}

display avail3_obj, avail3_dual;

Figure 13-4: Testing conditions within a loop (steelT.sa5).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In all cases, an else is paired with the closest preceding available if.

13.5 Terminating a loop: break and continue

Two other statements work with looping statements to make some scripts easier to
write. The continue statement terminates the current pass through a for or repeat
loop; all further statements in the current pass are skipped, and execution continues with
the test that controls the start of the next pass (if any). The break statement completely
terminates a for or repeat loop, sending control immediately to the statement follow-
ing the end of the loop.

As an example of both these commands, Figure 13-5 exhibits another way of writing
the loop from Figure 13-4, so that a table entry is made only when there is a change in the
dual value associated with avail[3]. After solving, we test to see if the new dual
value is equal to the previous one:

if Time[3].dual = previous_dual then continue;

If it is, there is nothing to be done for this value of avail[3], and the continue
statement jumps to the end of the current pass; execution resumes with the next pass,
starting at the beginning of the loop.

After adding an entry to the table, we test to see if the dual value has fallen to zero:



SECTION 13.5 TERMINATING A LOOP: BREAK AND CONTINUE 267

________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

model steelT.mod;
data steelT.dat;

option solution_precision 10;
option solver_msg 0;

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};

let avail[3] := 0;
param previous_dual default Infinity;

repeat {
let avail[3] := avail[3] + 1;
solve;
if Time[3].dual = previous_dual then continue;

let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj[avail[3]] := Total_Profit;
let avail3_dual[avail[3]] := Time[3].dual;

if Time[3].dual = 0 then break;

let previous_dual := Time[3].dual;
}

display avail3_obj, avail3_dual;

Figure 13-5: Using break and continue in a loop (steelT.sa7).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

if Time[3].dual = 0 then break;

If it has, the loop is done and the break statement jumps out; execution passes to the
display command that follows the loop in the script. Since the repeat statement in
this example has no while or until condition, it relies on the break statement for
termination.

When a break or continue lies within a nested loop, it applies only to the inner-
most loop. This convention generally has the desired effect. As an example, consider
how we could expand Figure 13-5 to perform a separate sensitivity analysis on each
avail[t]. The repeat loop would be nested in a for {t in 1..T} loop, but the
continue and break statements would apply to the inner repeat as before.

There do exist situations in which the logic of a script requires breaking out of multi-
ple loops. In the script of Figure 13-5, for instance, we can imagine that instead of stop-
ping when Time[3].dual is zero,

if Time[3].dual = 0 then break;

we want to stop when Time[t].dual falls below 2700 for any t. It might seem that
one way to implement this criterion is:

for {t in 1..T}
if Time[t].dual < 2700 then break;



268 COMMAND SCRIPTS CHAPTER 13

This statement does not have the desired effect, however, because break applies only to
the inner for loop that contains it, rather than to the outer repeat loop as we desire. In
such situations, we can give a name to a loop, and break or continue can specify by
name the loop to which it should apply. Using this feature, the outer loop in our example
could be named sens_loop:

repeat sens_loop {

and the test for termination inside it could refer to its name:

for {t in 1..T}
if Time[t].dual < 2700 then break sens_loop;

The loop name appears right after repeat or for, and after break or continue.

13.6 Stepping through a script

If you think that a script might not be doing what you want it to, you can tell AMPL to
step through it one command at a time. This facility can be used to provide an elemen-
tary form of ‘‘symbolic debugger’’ for scripts.

To step through a script that does not execute any other scripts, reset the option
single_step to 1 from its default value of 0. For example, here is how you might
begin stepping through the script in Figure 13-5:

ampl: option single_step 1;
ampl: commands steelT.sa7;
steelT.sa7:2(18) data ...
<2>ampl:

The expression steelT.sa7:2(18) gives the filename, line number and character
number where AMPL has stopped in its processing of the script. It is followed by the
beginning of the next command (data) to be executed. On the next line you are returned
to the ampl: prompt. The <2> in front indicates the level of input nesting; ‘‘2’’ means
that execution is within the scope of a commands statement that was in turn issued in the
original input stream.

At this point you may use the step command to execute individual commands of the
script. Type step by itself to execute one command,

<2>ampl: step
steelT.sa7:4(36) option ...
<2>ampl: step
steelT.sa7:5(66) option ...
<2>ampl: step
steelT.sa7:11(167) let ...
<2>ampl:



SECTION 13.6 STEPPING THROUGH A SCRIPT 269

If step is followed by a number, that number of commands will be executed. Every
command is counted except those having to do with model declarations, such as model
and param in this example.

Each step returns you to an AMPL prompt. You may continue stepping until the
script ends, but at some point you will want to display some values to see if the script is
working. This sequence captures one place where the dual value changes:

<2>ampl: display avail[3], Time[3].dual, previous_dual;
avail[3] = 22
Time[3].dual = 3620
previous_dual = 3620

<2>ampl: step
steelT.sa7:17(317) continue ...
<2>ampl: step
steelT.sa7:15(237) let ...
<2>ampl: step
steelT.sa7:16(270) solve ...
<2>ampl: step
steelT.sa7:17(280) if ...
<2>ampl: step
steelT.sa7:19(331) let ...
<2>ampl: display avail[3], Time[3].dual, previous_dual;
avail[3] = 23
Time[3].dual = 3500
previous_dual = 3620
<2>ampl:

Any series of AMPL commands may be typed while single-stepping. After each com-
mand, the <2>ampl prompt returns to remind you that you are still in this mode and may
use step to continue executing the script.

To help you step through lengthy compound commands (for, repeat, or if)
AMPL provides several alternatives to step. The next command steps past a com-
pound command rather than into it. If we had started at the beginning, each next would
cause the next statement to be executed; in the case of the repeat, the entire command
would be executed, stopping again only at the display command on line 28:

ampl: option single_step 1;
ampl: commands steelT.sa7;
steelT.sa7:2(18) data ...
<2>ampl: next
steelT.sa7:4(36) option ...
<2>ampl: next
steelT.sa7:5(66) option ...
<2>ampl: next
steelT.sa7:11(167) let ...
<2>ampl: next
steelT.sa7:14(225) repeat ...
<2>ampl: next
steelT.sa7:28(539) display ...
<2>ampl:



270 COMMAND SCRIPTS CHAPTER 13

Type next n to step past n commands in this way.
The commands skip and skip n work like step and step n, except that they skip

the next 1 or n commands in the script rather than executing them.

13.7 Manipulating character strings

The ability to work with arbitrary sets of character strings is one of the key advan-
tages of AMPL scripting. We describe here the string concatenation operator and several
functions for building up string-valued expressions that can be used anywhere that set
members can appear in AMPL statements. Further details are provided in Section A.4.2,
and Table A-4 summarizes all of the string functions.

We also show how string expressions may be used to specify character strings that
serve purposes other than being set members. This feature allows an AMPL script to, for
example, write a different file or set different option values in each pass through a loop,
according to information derived from the contents of the loop indexing sets.

String functions and operators

The concatenation operator & takes two strings as operands, and returns a string con-
sisting of the left operand followed by the right operand. For example, given the sets
NUTR and FOOD defined by diet.mod and diet2.dat (Figures 2-1 and 2-3), you
could use concatenation to define a set NUTR_FOOD whose members represent nutrient-
food pairs:

ampl: model diet.mod;
ampl: data diet2.dat;
ampl: display NUTR, FOOD;
set NUTR := A B1 B2 C NA CAL;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR;
ampl: set NUTR_FOOD := setof {i in NUTR,j in FOOD} i & "_" & j;
ampl: display NUTR_FOOD;
set NUTR_FOOD :=
A_BEEF B1_BEEF B2_BEEF C_BEEF NA_BEEF CAL_BEEF
A_CHK B1_CHK B2_CHK C_CHK NA_CHK CAL_CHK
A_FISH B1_FISH B2_FISH C_FISH NA_FISH CAL_FISH
A_HAM B1_HAM B2_HAM C_HAM NA_HAM CAL_HAM
A_MCH B1_MCH B2_MCH C_MCH NA_MCH CAL_MCH
A_MTL B1_MTL B2_MTL C_MTL NA_MTL CAL_MTL
A_SPG B1_SPG B2_SPG C_SPG NA_SPG CAL_SPG
A_TUR B1_TUR B2_TUR C_TUR NA_TUR CAL_TUR;

This is not a set that you would normally want to define, but it might be useful if you
have to read data in which strings like "B2_BEEF" appear.



SECTION 13.7 MANIPULATING CHARACTER STRINGS 271

Numbers that appear as arguments to & are automatically converted to strings. As an
example, for a multi-week model you can create a set of generically-named periods
WEEK1, WEEK2, and so forth, by declaring:

param T integer > 1;
set WEEKS ordered = setof {t in 1..T} "WEEK" & t;

Numeric operands to & are always converted to full precision (or equivalently, to %.0g
format) as defined in Section A.16. The conversion thus produces the expected results
for concatenation of numerical constants and of indices that run over sets of integers or
constants, as in our examples. Full precision conversion of computed fractional values
may sometimes yield surprising results, however. The following variation on the preced-
ing example would seem to create a set of members WEEK0.1, WEEK0.2, and so forth:

param T integer > 1;
set WEEKS ordered = setof {t in 1..T} "WEEK" & 0.1*t;

But the actual set comes out differently:

ampl: let T := 4;
ampl: display WEEKS;
set WEEKS :=
WEEK0.1 WEEK0.30000000000000004
WEEK0.2 WEEK0.4;

Because 0.1 cannot be stored exactly in a binary representation, the value of 0.1*3 is
slightly different from 0.3 in ‘‘full’’ precision. There is no easy way to predict this
behavior, but it can be prevented by specifying an explicit conversion using sprintf.
The sprintf function does format conversions in the same way as printf (Section
A.16), except that the resulting formatted string is not sent to an output stream, but
instead becomes the function’s return value. For our example, "WEEK" & 0.1*t could
be replaced by sprintf("WEEK%3.1f",0.1*t).

The length string function takes a string as argument and returns the number of
characters in it. The match function takes two string arguments, and returns the first
position where the second appears as a substring in the first, or zero if the second never
appears as a substring in the first. For example:

ampl: display {j in FOOD} (length(j), match(j,"H"));
: length(j) match(j, ’H’) :=
BEEF 4 0
CHK 3 2
FISH 4 4
HAM 3 1
MCH 3 3
MTL 3 0
SPG 3 0
TUR 3 0
;

The substr function takes a string and one or two integers as arguments. It returns a
substring of the first argument that begins at the position given by the second argument; it



272 COMMAND SCRIPTS CHAPTER 13

has the length given by the third argument, or extends to the end of the string if no third
argument is given. An empty string is returned if the second argument is greater than the
length of the first argument, or if the third argument is less than 1.

As an example combining several of these functions, suppose that you want to use the
model from diet.mod but to supply the nutrition amount data in a table like this:

param: NUTR_FOOD: amt_nutr :=
A_BEEF 60
B1_BEEF 10
CAL_BEEF 295
CAL_CHK 770
...

Then in addition to the declarations for the parameter amt used in the model,

set NUTR;
set FOOD;
param amt {NUTR,FOOD} >= 0;

you would declare a set and a parameter to hold the data from the ‘‘nonstandard’’ table:

set NUTR_FOOD;
param amt_nutr {NUTR_FOOD} >= 0;

To use the model, you need to write an assignment of some kind to get the data from set
NUTR_FOOD and parameter amt_nutr into sets NUTR and FOOD and parameter amt.
One solution is to extract the sets first, and then convert the parameters:

set NUTR = setof {ij in NUTR_FOOD}
substr(ij,1,match(ij,"_")-1);

set FOOD = setof {ij in NUTR_FOOD}
substr(ij,match(ij,"_")+1);

param amt {i in NUTR, j in FOOD} = amt_nutr[i & "_" & j];

As an alternative, you can extract the sets and parameters together with a script such as
the following:

param iNUTR symbolic;
param jFOOD symbolic;
param upos > 0;
let NUTR := {};
let FOOD := {};

for {ij in NUTR_FOOD} {
let upos := match(ij,"_");
let iNUTR := substr(ij,1,upos-1);
let jFOOD := substr(ij,upos+1);
let NUTR := NUTR union {iNUTR};
let FOOD := FOOD union {jFOOD};
let amt[iNUTR,jFOOD] := amt_nutr[ij];

}

Under either alternative, errors such as a missing ‘‘_’’ in a member of NUTR_FOOD are
eventually signaled by error messages.



SECTION 13.7 MANIPULATING CHARACTER STRINGS 273

AMPL provides two other functions, sub and gsub, that look for the second argu-
ment in the first, like match, but that then substitute a third argument for either the first
occurrence (sub) or all occurrences (gsub) found. The second argument of all three of
these functions is actually a regular expression; if it contains certain special characters, it
is interpreted as a pattern that may match many sub-strings. The pattern "ˆB[0-9]+_",
for example, matches any sub-string consisting of a B followed by one or more digits and
then an underscore, and occurring at the beginning of a string. Details of these features
are given in Section A.4.2.

String expressions in AMPL commands

String-valued expressions may appear in place of literal strings in several contexts: in
filenames that are part of commands, including model, data, and commands, and in
filenames following > or >> to specify redirection of output; in values assigned to AMPL
options by an option command; and in the string-list and the database row and column
names specified in a table statement. In all such cases, the string expression must be
identified by enclosing it in parentheses.

Here is an example involving filenames. This script uses a string expression to spec-
ify files for a data statement and for the redirection of output from a display state-
ment:

model diet.mod;
set CASES = 1 .. 3;
for {j in CASES} {

reset data;
data ("diet" & j & ".dat");
solve;
display Buy >("diet" & j & ".out");

}

The result is to solve diet.mod with a series of different data files diet1.dat,
diet2.dat, and diet3.dat, and to save the solution to files diet1.out,
diet2.out, and diet3.out. The value of the index j is converted automatically
from a number to a string as previously explained.

The following script uses a string expression to specify the value of the option
cplex_options, which contains directions for the CPLEX solver:

model sched.mod;
data sched.dat;
option solver cplex;
set DIR1 = {"primal","dual"};
set DIR2 = {"primalopt","dualopt"};
for {i in DIR1, j in DIR2} {

option cplex_options (i & " " & j);
solve;

}



274 COMMAND SCRIPTS CHAPTER 13

The loop in this script solves the same problem four times, each using a different pairing
of the directives primal and dual with the directives primalopt and dualopt.

Examples of the use of string expressions in the table statement, to work with mul-
tiple database files, tables, or columns, are presented in Section 10.6.




