
12
__

Display Commands

AMPL offers a rich variety of commands and options to help you examine and report
the results of optimization. Section 12.1 introduces display, the most convenient com-
mand for arranging set members and numerical values into lists and tables; Sections 12.2
and 12.3 provide a detailed account of display options that give you more control over
how the lists and tables are arranged and how numbers appear in them. Section 12.4
describes print and printf, two related commands that are useful for preparing data
to be sent to other programs, and for formatting simple reports.

Although our examples are based on the display of sets, parameters and variables —
and expressions involving them — you can use the same commands to inspect dual val-
ues, slacks, reduced costs, and other quantities associated with an optimal solution; the
rules for doing so are explained in Section 12.5.

AMPL also provides ways to access modeling and solving information. Section 12.6
describes features that can be useful when, for example, you want to view a parameter’s
declaration at the command-line, display a particular constraint from a problem instance,
list the values and bounds of all variables regardless of their names, or record timings of
AMPL and solver activities.

Finally, Section 12.7 addresses general facilities for manipulating output of AMPL
commands. These include features for redirection of command output, logging of output,
and suppression of error messages.

12.1 Browsing through results: the display command

The easiest way to examine data and result values is to type display and a descrip-
tion of what you want to look at. The display command automatically formats the val-
ues in an intuitive and familiar arrangement; as much as possible, it uses the same list and
table formats as the data statements described in Chapter 9. Our examples use parameters
and variables from models defined in other chapters.

219

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

220 DISPLAY COMMANDS CHAPTER 12

As we will describe in more detail in Section 12.7, it is possible to capture the output
of display commands in a file, by adding >filename to the end of a display com-
mand; this redirection mechanism applies as well to most other commands that produce
output.

Displaying sets

The contents of sets are shown by typing display and a list of set names. This
example is taken from the model of Figure 6-2a:

ampl: display ORIG, DEST, LINKS;
set ORIG := GARY CLEV PITT;
set DEST := FRA DET LAN WIN STL FRE LAF;
set LINKS :=
(GARY,DET) (GARY,LAF) (CLEV,LAN) (CLEV,LAF) (PITT,STL)
(GARY,LAN) (CLEV,FRA) (CLEV,WIN) (PITT,FRA) (PITT,FRE)
(GARY,STL) (CLEV,DET) (CLEV,STL) (PITT,WIN);

If you specify the name of an indexed collection of sets, each set in the collection is
shown (from Figure 6-3):

ampl: display PROD, AREA;
set PROD := bands coils;
set AREA[bands] := east north;
set AREA[coils] := east west export;

Particular members of an indexed collection can be viewed by subscripting, as in
display AREA["bands"].

The argument of display need not be a declared set; it can be any of the expres-
sions described in Chapter 5 or 6 that evaluate to sets. For example, you can show the
union of all the sets AREA[p]:

ampl: display union {p in PROD} AREA[p];
set union {p in PROD} AREA[p] := east north west export;

or the set of all transportation links on which the shipping cost is greater than 500:

ampl: display {(i,j) in LINKS: cost[i,j] * Trans[i,j] > 500};
set {(i,j) in LINKS: cost[i,j]*Trans[i,j] > 500} :=
(GARY,STL) (CLEV,DET) (CLEV,WIN) (PITT,FRA) (PITT,FRE)
(GARY,LAF) (CLEV,LAN) (CLEV,LAF) (PITT,STL);

Because the membership of this set depends upon the current values of the variables
Trans[i,j], you could not refer to it in a model, but it is legal in a display com-
mand, where variables are treated the same as parameters.

Displaying parameters and variables

The display command can show the value of a scalar model component:

SECTION 12.1 BROWSING THROUGH RESULTS: THE DISPLAY COMMAND 221

ampl: display T;
T = 4

or the values of individual components from an indexed collection (Figure 1-6b):

ampl: display avail["reheat"], avail["roll"];
avail[’reheat’] = 35
avail[’roll’] = 40

or an arbitrary expression:

ampl: display sin(1)ˆ2 + cos(1)ˆ2;
sin(1)ˆ2 + cos(1)ˆ2 = 1

The major use of display, however, is to show whole indexed collections of data. For
‘‘one-dimensional’’ data — parameters or variables indexed over a simple set — AMPL
uses a column format (Figure 4-6b):

ampl: display avail;
avail [*] :=
reheat 35

roll 40
;

For ‘‘two-dimensional’’ parameters or variables — indexed over a set of pairs or two
simple sets — AMPL forms a list for small amounts of data (Figure 4-1):

ampl: display supply;
supply :=
CLEV bands 700
CLEV coils 1600
CLEV plate 300
GARY bands 400
GARY coils 800
GARY plate 200
PITT bands 800
PITT coils 1800
PITT plate 300
;

or a table for larger amounts:

ampl: display demand;

demand [*,*]
: bands coils plate :=
DET 300 750 100
FRA 300 500 100
FRE 225 850 100
LAF 250 500 250
LAN 100 400 0
STL 650 950 200
WIN 75 250 50
;

222 DISPLAY COMMANDS CHAPTER 12

You can control the choice between formats by setting option display_1col, which is
described in the next section.

A parameter or variable (or any other model entity) indexed over a set of ordered pairs
is also considered to be a two-dimensional object and is displayed in a similar manner.
Here is the display for a parameter indexed over the set LINKS that was displayed earlier
in this section (from Figure 6-2a):

ampl: display cost;
cost :=
CLEV DET 9
CLEV FRA 27
CLEV LAF 17
CLEV LAN 12
CLEV STL 26
CLEV WIN 9
GARY DET 14
GARY LAF 8
GARY LAN 11
GARY STL 16
PITT FRA 24
PITT FRE 99
PITT STL 28
PITT WIN 13
;

This, too, can be made to appear in a table format, as the next section will show.
To display values indexed in three or more dimensions, AMPL again forms lists for

small amounts of data. Multi-dimensional entities more often involve data in large quan-
tities, however, in which case AMPL ‘‘slices’’ the values into two-dimensional tables, as
in the case of this variable from Figure 4-6:

ampl: display Trans;
Trans [CLEV,*,*]
: bands coils plate :=
DET 0 750 0
FRA 0 0 0
FRE 0 0 0
LAF 0 500 0
LAN 0 400 0
STL 0 50 0
WIN 0 250 0

[GARY,*,*]
: bands coils plate :=
DET 0 0 0
FRA 0 0 0
FRE 225 850 100
LAF 250 0 0
LAN 0 0 0
STL 650 900 200
WIN 0 0 0

SECTION 12.1 BROWSING THROUGH RESULTS: THE DISPLAY COMMAND 223

[PITT,*,*]
: bands coils plate :=
DET 300 0 100
FRA 300 500 100
FRE 0 0 0
LAF 0 0 250
LAN 100 0 0
STL 0 0 0
WIN 75 0 50
;

At the head of the first table, the template [CLEV,*,*] indicates that the slice is
through CLEV in the first component, so the entry in row LAF and column coils says
that Trans["CLEV","LAF","coils"] is 500. Since the first index of Trans is
always CLEV, GARY or PITT in this case, there are three slice tables in all. But AMPL
does not always slice through the first component; it picks the slices so that the display
will contain the fewest possible tables.

A display of two or more components of the same dimensionality is always presented
in a list format, whether the components are one-dimensional (Figure 4-4):

ampl: display inv0, prodcost, invcost;
: inv0 prodcost invcost :=
bands 10 10 2.5
coils 0 11 3
;

or two-dimensional (Figure 4-6):

ampl: display rate, make_cost, Make;
: rate make_cost Make :=
CLEV bands 190 190 0
CLEV coils 130 170 1950
CLEV plate 160 185 0
GARY bands 200 180 1125
GARY coils 140 170 1750
GARY plate 160 180 300
PITT bands 230 190 775
PITT coils 160 180 500
PITT plate 170 185 500
;

or any higher dimension. The indices appear in a list to the left, with the last one chang-
ing most rapidly.

As you can see from these examples, display normally arranges row and column
labels in alphabetical or numerical order, regardless of the order in which they might have
been given in your data file. When the labels come from an ordered set, however, the
original ordering is honored (Figure 5-3):

224 DISPLAY COMMANDS CHAPTER 12

ampl: display avail;
avail [*] :=
27sep 40
04oct 40
11oct 32
18oct 40
;

For this reason, it can be worthwhile to declare certain sets of your model to be ordered,
even if their ordering plays no explicit role in your formulation.

Displaying indexed expressions

The display command can show the value of any arithmetic expression that is
valid in an AMPL model. Single-valued expressions pose no difficulty, as in the case of
these three profit components from Figure 4-4:

ampl: display sum {p in PROD,t in 1..T} revenue[p,t]*Sell[p,t],
ampl? sum {p in PROD,t in 1..T} prodcost[p]*Make[p,t],
ampl? sum {p in PROD,t in 1..T} invcost[p]*Inv[p,t];
sum{p in PROD, t in 1 .. T} revenue[p,t]*Sell[p,t] = 787810
sum{p in PROD, t in 1 .. T} prodcost[p]*Make[p,t] = 269477
sum{p in PROD, t in 1 .. T} invcost[p]*Inv[p,t] = 3300

Suppose, however, that you want to see all the individual values of revenue[p,t] *
Sell[p,t]. Since you can type display revenue, Sell to display the separate
values of revenue[p,t] and Sell[p,t], you might want to ask for the products of
these values by typing:

ampl: display revenue * Sell;
syntax error
context: display revenue >>> * <<< Sell;

AMPL does not recognize this kind of array arithmetic. To display an indexed collection
of expressions, you must specify the indexing explicitly:

ampl: display {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t];
revenue[p,t]*Sell[p,t] [*,*] (tr)
: bands coils :=
1 150000 9210
2 156000 87500
3 37800 129500
4 54000 163800
;

To apply the same indexing to two or more expressions, enclose a list of them in paren-
theses after the indexing expression:

SECTION 12.1 BROWSING THROUGH RESULTS: THE DISPLAY COMMAND 225

ampl: display {p in PROD, t in 1..T}
ampl? (revenue[p,t]*Sell[p,t], prodcost[p]*Make[p,t]);
: revenue[p,t]*Sell[p,t] prodcost[p]*Make[p,t] :=
bands 1 150000 59900
bands 2 156000 60000
bands 3 37800 14000
bands 4 54000 20000
coils 1 9210 15477
coils 2 87500 15400
coils 3 129500 38500
coils 4 163800 46200
;

An indexing expression followed by an expression or parenthesized list of expressions is
treated as a single display item, which specifies some indexed collection of values. A
display command may contain one of these items as above, or a comma-separated list
of them.

The presentation of the values for indexed expressions follows the same rules as for
individual parameters and variables. In fact, you can regard a command like

display revenue, Sell

as shorthand for

ampl: display {p in PROD, t in 1..T} (revenue[p,t],Sell[p,t]);
: revenue[p,t] Sell[p,t] :=
bands 1 25 6000
bands 2 26 6000
bands 3 27 1400
bands 4 27 2000
coils 1 30 307
coils 2 35 2500
coils 3 37 3500
coils 4 39 4200
;

If you rearrange the indexing expression so that t in 1..T comes first, however, the
rows of the list are instead sorted first on the members of 1..T:

ampl: display {t in 1..T, p in PROD} (revenue[p,t],Sell[p,t]);
: revenue[p,t] Sell[p,t] :=
1 bands 25 6000
1 coils 30 307
2 bands 26 6000
2 coils 35 2500
3 bands 27 1400
3 coils 37 3500
4 bands 27 2000
4 coils 39 4200
;

This change in the default presentation can only be achieved by placing an explicit index-
ing expression after display.

226 DISPLAY COMMANDS CHAPTER 12

In addition to indexing individual display items, you can specify a set over which the
whole display command is indexed — that is, you can ask that the command be exe-
cuted once for each member of an indexing set. This feature is particularly useful for
rearranging slices of multidimensional tables. When, earlier in this section, we displayed
the three-dimensional variable Trans indexed over {ORIG,DEST,PROD}, AMPL
chose to slice the values through members of ORIG to produce a series of two-
dimensional tables.

What if you want to display slices through PROD? Rearranging the indexing expres-
sion, as in our previous example, will not reliably have the desired effect; the display
command always picks the smallest indexing set, and where there is more than one that is
smallest, it does not necessarily choose the first. Instead, you can say explicitly that you
want a separate display for each p in PROD:

ampl: display {p in PROD}:
ampl? {i in ORIG, j in DEST} Trans[i,j,p];
Trans[i,j,’bands’] [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 300
FRA 0 0 300
FRE 0 225 0
LAF 0 250 0
LAN 0 0 100
STL 0 650 0
WIN 0 0 75
;

Trans[i,j,’coils’] [*,*] (tr)
: CLEV GARY PITT :=
DET 750 0 0
FRA 0 0 500
FRE 0 850 0
LAF 500 0 0
LAN 400 0 0
STL 50 900 0
WIN 250 0 0
;

Trans[i,j,’plate’] [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 100
FRA 0 0 100
FRE 0 100 0
LAF 0 0 250
LAN 0 0 0
STL 0 200 0
WIN 0 0 50
;

As this example shows, if a display command specifies an indexing expression right at
the beginning, followed by a colon, the indexing set applies to the whole command. For

SECTION 12.2 FORMATTING OPTIONS FOR DISPLAY 227

__
__

display_1col maximum elements for a table to be displayed in list format (20)
display_transpose transpose tables if rows – columns < display_transpose (0)
display_width maximum line width (79)
gutter_width separation between table columns (3)
omit_zero_cols if not 0, omit all-zero columns from displays (0)
omit_zero_rows if not 0, omit all-zero rows from displays (0)

Table 12-1: Formatting options for display (with default values).
__

each member of the set, the expressions following the colon are evaluated and displayed
separately.

12.2 Formatting options for display

The display command uses a few simple rules for choosing a good arrangement of
data. By changing several options, you can control overall arrangement, handling of zero
values, and line width. These options are summarized in Table 12-1, with default values
shown in parentheses.

Arrangement of lists and tables

The display of a one-dimensional parameter or variable can produce a very long list,
as in this example from the scheduling model of Figure 16-5:

ampl: display required;
required [*] :=
Fri1 100
Fri2 78
Fri3 52
Mon1 100
Mon2 78
Mon3 52
Sat1 100
Sat2 78
Thu1 100
Thu2 78
Thu3 52
Tue1 100
Tue2 78
Tue3 52
Wed1 100
Wed2 78
Wed3 52
;

228 DISPLAY COMMANDS CHAPTER 12

The option display_1col can be used to request a more compact format:

ampl: option display_1col 0;
ampl: display required;
required [*] :=
Fri1 100 Mon1 100 Sat1 100 Thu2 78 Tue2 78 Wed2 78
Fri2 78 Mon2 78 Sat2 78 Thu3 52 Tue3 52 Wed3 52
Fri3 52 Mon3 52 Thu1 100 Tue1 100 Wed1 100
;

The one-column list format is used when the number of values to be displayed is less than
or equal to display_1col, and the compact format is used otherwise. The default for
display_1col is 20; set it to zero to force the compact format, or to a very large num-
ber to force the list format.

Multi-dimensional displays are affected by option display_1col in an analogous
way. The one-column list format is used when the number of values is less than or equal
to display_1col, while the appropriate compact format — in this case, a table — is
used otherwise. We showed an example of the difference in the previous section, where
the display for supply appeared as a list because it had only 9 values, while the display
for demand appeared as a table because its 21 values exceed the default setting of 20 for
option display_1col.

Since a parameter or variable indexed over a set of ordered pairs is also considered to
be two-dimensional, the value of display_1col affects its display as well. Here is the
table format for the parameter cost indexed over the set LINKS (from Figure 6-2a) that
was displayed in the preceding section:

ampl: option display_1col 0;
ampl: display cost;

cost [*,*] (tr)
: CLEV GARY PITT :=
DET 9 14 .
FRA 27 . 24
FRE . . 99
LAF 17 8 .
LAN 12 11 .
STL 26 16 28
WIN 9 . 13
;

A dot (.) entry indicates a nonexistent combination in the index set. Thus in the GARY
column of the table, there is a dot in the FRA row because the pair (GARY,FRA) is not a
member of LINKS; no cost["GARY","FRA"] is defined for this problem. On the
other hand, LINKS does contain the pair (GARY,LAF), and cost["GARY","LAF"]
is shown as 8 in the table.

In choosing an orientation for tables, the display command by default favors rows
over columns; that is, if the number of columns would exceed the number of rows, the
table is transposed. Thus the table for demand in the previous section has rows labeled
by the first coordinate and columns by the second, because it is indexed over DEST with

SECTION 12.2 FORMATTING OPTIONS FOR DISPLAY 229

7 members and then PROD with 3 members. By contrast, the table for cost has columns
labeled by the first coordinate and rows by the second, because it is indexed over ORIG
with 3 members and then DEST with 7 members. A transposed table is indicated by a
(tr) in its first line.

The transposition status of a table can be reversed by changing the
display_transpose option. Positive values tend to force transposition:

ampl: option display_transpose 5;
ampl: display demand;
demand [*,*] (tr)
: DET FRA FRE LAF LAN STL WIN :=
bands 300 300 225 250 100 650 75
coils 750 500 850 500 400 950 250
plate 100 100 100 250 0 200 50
;

while negative values tend to suppress it:

ampl: option display_transpose -5;
ampl: display cost;
cost [*,*]
: DET FRA FRE LAF LAN STL WIN :=
CLEV 9 27 . 17 12 26 9
GARY 14 . . 8 11 16 .
PITT . 24 99 . . 28 13
;

The rule is as follows: a table is transposed only when the number of rows minus the
number of columns would be less than display_transpose. At its default value of
zero, display_transpose gives the previously described default behavior.

Control of line width

The option display_width gives the maximum number of characters on a line
generated by display (as seen in the model of Figure 16-4):

ampl: option display_width 50, display_1col 0;
ampl: display required;

required [*] :=
Fri1 100 Mon3 52 Thu3 52 Wed2 78
Fri2 78 Sat1 100 Tue1 100 Wed3 52
Fri3 52 Sat2 78 Tue2 78
Mon1 100 Thu1 100 Tue3 52
Mon2 78 Thu2 78 Wed1 100
;

When a table would be wider than display_width, it is cut vertically into two or
more tables. The row names in each table are the same, but the columns are different:

230 DISPLAY COMMANDS CHAPTER 12

ampl: option display_width 50; display cost;
cost [*,*]
: C118 C138 C140 C246 C250 C251 D237 D239 :=
Coullard 6 9 8 7 11 10 4 5
Daskin 11 8 7 6 9 10 1 5
Hazen 9 10 11 1 5 6 2 7
Hopp 11 9 8 10 6 5 1 7
Iravani 3 2 8 9 10 11 1 5
Linetsky 11 9 10 5 3 4 6 7
Mehrotra 6 11 10 9 8 7 1 2
Nelson 11 5 4 6 7 8 1 9
Smilowitz 11 9 10 8 6 5 7 3
Tamhane 5 6 9 8 4 3 7 10
White 11 9 8 4 6 5 3 10

: D241 M233 M239 :=
Coullard 3 2 1
Daskin 4 2 3
Hazen 8 3 4
Hopp 4 2 3
Iravani 4 6 7
Linetsky 8 1 2
Mehrotra 5 4 3
Nelson 10 2 3
Smilowitz 4 1 2
Tamhane 11 2 1
White 7 2 1
;

If a table’s column headings are much wider than the values, display introduces
abbreviations to keep all columns together (Figure 4-4):

ampl: option display_width 40;
ampl: display {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t],
ampl? prodcost[p]*Make[p,t], invcost[p]*Inv[p,t]);
$1 = revenue[p,t]*Sell[p,t]
$2 = prodcost[p]*Make[p,t]
$3 = invcost[p]*Inv[p,t]
: $1 $2 $3 :=
bands 1 150000 59900 0
bands 2 156000 60000 0
bands 3 37800 14000 0
bands 4 54000 20000 0
coils 1 9210 15477 3300
coils 2 87500 15400 0
coils 3 129500 38500 0
coils 4 163800 46200 0
;

On the other hand, where the headings are narrower than the values, you may be able to
squeeze more on a line by reducing the option gutter_width — the number of spaces
between columns — from its default value of 3 to 2 or 1.

SECTION 12.2 FORMATTING OPTIONS FOR DISPLAY 231

Suppression of zeros

In some kinds of linear programs that have many more variables than constraints,
most of the variables have an optimal value of zero. For instance in the assignment prob-
lem of Figure 3-2, the optimal values of all the variables form this table, in which there is
a single 1 in each row and each column:

ampl: display Trans;

Trans [*,*]
: C118 C138 C140 C246 C250 C251 D237 D239 D241 M233 M239 :=
Coullard 1 0 0 0 0 0 0 0 0 0 0
Daskin 0 0 0 0 0 0 0 0 1 0 0
Hazen 0 0 0 1 0 0 0 0 0 0 0
Hopp 0 0 0 0 0 0 1 0 0 0 0
Iravani 0 1 0 0 0 0 0 0 0 0 0
Linetsky 0 0 0 0 1 0 0 0 0 0 0
Mehrotra 0 0 0 0 0 0 0 1 0 0 0
Nelson 0 0 1 0 0 0 0 0 0 0 0
Smilowitz 0 0 0 0 0 0 0 0 0 1 0
Tamhane 0 0 0 0 0 1 0 0 0 0 0
White 0 0 0 0 0 0 0 0 0 0 1
;

By setting omit_zero_rows to 1, all the zero values are suppressed, and the list
comes down to the entries of interest:

ampl: option omit_zero_rows 1;

ampl: display Trans;

Trans :=
Coullard C118 1
Daskin D241 1
Hazen C246 1
Hopp D237 1
Iravani C138 1
Linetsky C250 1
Mehrotra D239 1
Nelson C140 1
Smilowitz M233 1
Tamhane C251 1
White M239 1
;

If the number of nonzero entries is less than the value of display_1col, the data is
printed as a list, as it is here. If the number of nonzeros is greater than display_1col,
a table format would be used, and the omit_zero_rows option would only suppress
table rows that contain all zero entries.

For example, the display of the three-dimensional variable Trans from earlier in this
chapter would be condensed to the following:

232 DISPLAY COMMANDS CHAPTER 12

ampl: display Trans;
Trans [CLEV,*,*]
: bands coils plate :=
DET 0 750 0
LAF 0 500 0
LAN 0 400 0
STL 0 50 0
WIN 0 250 0

[GARY,*,*]
: bands coils plate :=
FRE 225 850 100
LAF 250 0 0
STL 650 900 200

[PITT,*,*]
: bands coils plate :=
DET 300 0 100
FRA 300 500 100
LAF 0 0 250
LAN 100 0 0
WIN 75 0 50
;

A corresponding option omit_zero_cols suppresses all-zero columns when set to 1,
and would eliminate two columns from Trans[CLEV,*,*].

12.3 Numeric options for display

The numbers in a table or list produced by display are the result of a transforma-
tion from the computer’s internal numeric representation to a string of digits and sym-
bols. AMPL’s options for adjusting this transformation are shown in Table 12-2. In this
section we first consider options that affect only the appearance of numbers, and then
options that affect underlying solution values as well.
__
__

display_eps smallest magnitude displayed differently from zero (0)

display_precision digits of precision to which displayed numbers are rounded; full pre-
cision if 0 (6)

display_round digits left or (if negative) right of decimal place to which displayed
numbers are rounded, overriding display_precision ("")

solution_precision digits of precision to which solution values are rounded; full preci-
sion if 0 (0)

solution_round digits left or (if negative) right of decimal place to which solution
values are rounded, overriding solution_precision ("")

Table 12-2: Numeric options for display (with default values).
__

SECTION 12.3 NUMERIC OPTIONS FOR DISPLAY 233

Appearance of numeric values

In all of our examples so far, the display command shows each numerical value to
the same number of significant digits:

ampl: display {p in PROD, t in 1..T} Make[p,t]/rate[p];
Make[p,t]/rate[p] [*,*] (tr)
: bands coils :=
1 29.95 10.05
2 30 10
3 20 12
4 32.1429 7.85714
;

ampl: display {p in PROD, t in 1..T} prodcost[p]*Make[p,t];
prodcost[p]*Make[p,t] [*,*] (tr)
: bands coils :=
1 59900 15477
2 60000 15400
3 40000 18480
4 64285.7 12100
;

(see Figures 6-3 and 6-4). The default is to use six significant digits, whether the result
comes out as 7.85714 or 64285.7. Some numbers seem to have fewer digits, but only
because trailing zeros have been dropped; 29.95 represents the number that is exactly
29.9500 to six digits, for example, and 59900 represents 59900.0.

By changing the option display_precision to a value other than six, you can
vary the number of significant digits reported:

ampl: option display_precision 3;
ampl: display Make[’bands’,4] / rate[’bands’],
ampl? prodcost[’bands’] * Make[’bands’,4];
Make[’bands’,4]/rate[’bands’] = 32.1
prodcost[’bands’]*Make[’bands’,4] = 64300

ampl: option display_precision 9;
ampl: display Make[’bands’,4] / rate[’bands’],
ampl? prodcost[’bands’] * Make[’bands’,4];
Make[’bands’,4]/rate[’bands’] = 32.1428571
prodcost[’bands’]*Make[’bands’,4] = 64285.7143

ampl: option display_precision 0;
ampl: display Make[’bands’,4] / rate[’bands’],
ampl? prodcost[’bands’] * Make[’bands’,4];
Make[’bands’,4]/rate[’bands’] = 32.14285714285713
prodcost[’bands’]*Make[’bands’,4] = 64285.71428571427

In the last example, a display_precision of 0 is interpreted specially; it tells
display to represent numbers as exactly as possible, using however many digits are
necessary. (To be precise, the displayed number is the shortest decimal representation
that, when correctly rounded to the computer’s representation, gives the value exactly as
stored in the computer.)

234 DISPLAY COMMANDS CHAPTER 12

Displays to a given precision provide the same degree of useful information about
each number, but they can look ragged due to the varying numbers of digits after the dec-
imal point. To specify rounding to a fixed number of decimal places, regardless of the
resulting precision, you may set the option display_round. A nonnegative value
specifies the number of digits to appear after the decimal point:

ampl: option display_round 2;
ampl: display {p in PROD, t in 1..T} Make[p,t]/rate[p];
Make[p,t]/rate[p] [*,*] (tr)
: bands coils :=
1 29.95 10.05
2 30.00 10.00
3 20.00 12.00
4 32.14 7.86
;

A negative value indicates rounding before the decimal point. For example, when
display_round is –2, all numbers are rounded to hundreds:

ampl: option display_round -2;
ampl: display {p in PROD, t in 1..T} prodcost[p]*Make[p,t];
prodcost[p]*Make[p,t] [*,*] (tr)
: bands coils :=
1 59900 15500
2 60000 15400
3 40000 18500
4 64300 12100
;

Any integer value of display_round overrides the effect of display_precision.
To turn off display_round, set it to some non-integer such as the empty string ’’.

Depending on the solver you employ, you may find that some of the solution values
that ought to be zero do not always quite come out that way. For example, here is one
solver’s report of the objective function terms cost[i,j] * Trans[i,j] for the
assignment problem of Section 3.3:

ampl: option omit_zero_rows 1;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Coullard D241 2.05994e-17
Daskin D237 1
Hazen C246 1
Hopp D237 6.86647e-18
Hopp D241 4
... 9 lines omitted
White C246 2.74659e-17
White C251 -3.43323e-17
White M239 1
;

SECTION 12.3 NUMERIC OPTIONS FOR DISPLAY 235

Minuscule values like 6.86647e–18 and –3.43323e–17 have no significance in the context
of this problem; they would be zeros in an exact solution, but come out slightly nonzero
as an artifact of the way that the solver’s algorithm interacts with the computer’s repre-
sentation of numbers.

To avoid viewing these numbers in meaningless precision, you can pick a reasonable
setting for display_round — in this case 0, since there are no digits of interest after
the decimal point:

ampl: option display_round 0;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Coullard D241 0
Daskin D237 1
Hazen C246 1
Hopp D237 0
Hopp D241 4
Iravani C118 0
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C138 0
Nelson C140 4
Smilowitz M233 1
Tamhane C118 -0
Tamhane C251 3
White C246 0
White C251 -0
White M239 1
;

The small numbers are now represented only as 0 if positive or –0 if negative. If you
want to suppress their appearance entirely, however, you must set a separate option,
display_eps:

ampl: option display_eps 1e-10;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D237 1
Hazen C246 1
Hopp D241 4
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;

236 DISPLAY COMMANDS CHAPTER 12

Any value whose magnitude is less than the value of display_eps is treated as an
exact zero in all output of display.

Rounding of solution values

The options display_precision, display_round and display_eps affect
only the appearance of numbers, not their actual values. You can see this if you try to
display the set of all pairs of i in ORIG and j in DEST that have a positive value in the
preceding table, by comparing cost[i,j]*Trans[i,j] to 0:

ampl: display {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0};
set {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0} :=
(Coullard,C118) (Iravani,C118) (Smilowitz,M233)
(Coullard,D241) (Iravani,C138) (Tamhane,C251)
(Daskin,D237) (Linetsky,C250) (White,C246)
(Hazen,C246) (Mehrotra,D239) (White,M239)
(Hopp,D237) (Nelson,C138)
(Hopp,D241) (Nelson,C140);

Even though a value like 2.05994e–17 is treated as a zero for purposes of display, it
tests greater than zero. You could fix this problem by changing > 0 above to, say, > 0.1.
As an alternative, you can set the option solution_round so that AMPL rounds the
solution values to a reasonable precision when they are received from the solver:

ampl: option solution_round 10;
ampl: solve;
MINOS 5.5: optimal solution found.
40 iterations, objective 28

ampl: display {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0};
set {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0} :=
(Coullard,C118) (Iravani,C138) (Smilowitz,M233)
(Daskin,D237) (Linetsky,C250) (Tamhane,C251)
(Hazen,C246) (Mehrotra,D239) (White,M239)
(Hopp,D241) (Nelson,C140);

The options solution_precision and solution_round work in the same way
as display_precision and display_round, except that they are applied only to
solution values upon return from a solver, and they permanently change the returned val-
ues rather than only their appearance.

Rounded values can make a difference even when they are not near zero. As an
example, we first use several display options to get a compact listing of the fractional
solution to the scheduling model of Figure 16-4:

ampl: model sched.mod;
ampl: data sched.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6

SECTION 12.3 NUMERIC OPTIONS FOR DISPLAY 237

ampl: option display_width 60;
ampl: option display_1col 5;

ampl: option display_eps 1e-10;
ampl: option omit_zero_rows 1;
ampl: display Work;
Work [*] :=
10 28.8 30 14.4 71 35.6 106 23.2 123 35.6
18 7.6 35 6.8 73 28 109 14.4
24 6.8 66 35.6 87 14.4 113 14.4
;

Each value Work[j] represents the number of workers assigned to schedule j. We can
get a quick practical schedule by rounding the fractional values up to the next highest
integer; using the ceil function to perform the rounding, we see that the total number of
workers needed should be:

ampl: display sum {j in SCHEDS} ceil(Work[j]);
sum{j in SCHEDS} ceil(Work[j]) = 273

If we copy the numbers from the preceding table and round them up by hand, however,
we find that they only sum to 271. The source of the difficulty can be seen by displaying
the numbers to full precision:

ampl: option display_eps 0;
ampl: option display_precision 0;

ampl: display Work;
Work [*] :=
10 28.799999999999997 73 28.000000000000018
18 7.599999999999998 87 14.399999999999995
24 6.79999999999999 95 -5.876671973951407e-15
30 14.40000000000001 106 23.200000000000006
35 6.799999999999995 108 4.685288280240683e-16
55 -4.939614313857677e-15 109 14.4
66 35.6 113 14.4
71 35.599999999999994 123 35.59999999999999
;

Half the problem is due to the minuscule positive value of Work[108], which was
rounded up to 1. The other half is due to Work[73]; although it is 28 in an exact solu-
tion, it comes back from the solver with a slightly larger value of 28.000000000000018,
so it gets rounded up to 29.

The easiest way to ensure that our arithmetic works correctly in this case is again to
set solution_round before solve:

ampl: option solution_round 10;
ampl: solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6

ampl: display sum {j in SCHEDS} ceil(Work[j]);
sum{j in SCHEDS} ceil(Work[j]) = 271

238 DISPLAY COMMANDS CHAPTER 12

We picked a value of 10 for solution_round because we observed that the slight
inaccuracies in the solver’s values occurred well past the 10th decimal place.

The effect of solution_round or solution_precision applies to all values
returned by the solver. To modify only certain values, use the assignment (let) com-
mand described in Section 11.3 together with the rounding functions in Table 11-1.

12.4 Other output commands: print and printf

Two additional AMPL commands have much the same syntax as display, but do
not automatically format their output. The print command does no formatting at all,
while the printf command requires an explicit description of the desired formatting.

The print command

A print command produces a single line of output:

ampl: print sum {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t],
ampl? sum {p in PROD, t in 1..T} prodcost[p]*Make[p,t],
ampl? sum {p in PROD, t in 1..T} invcost[p]*Inv[p,t];
787810 269477 3300

ampl: print {t in 1..T, p in PROD} Make[p,t];
5990 1407 6000 1400 1400 3500 2000 4200

or, if followed by an indexing expression and a colon, a line of output for each member of
the index set:

ampl: print {t in 1..T}: {p in PROD} Make[p,t];
5990 1407
6000 1400
1400 3500
2000 4200

Printed entries are normally separated by a space, but option print_separator can
be used to change this. For instance, you might set print_separator to a tab for
data to be imported by a spreadsheet; to do this, type option print_separator
"→", where → stands for the result of pressing the tab key.

The keyword print (with optional indexing expression and colon) is followed by a
print item or comma-separated list of print items. A print item can be a value, or an
indexing expression followed by a value or parenthesized list of values. Thus a print item
is much like a display item, except that only individual values may appear; although you
can say display rate, you must explicitly specify print {p in PROD} rate[p].
Also a set may not be an argument to print, although its members may be:

SECTION 12.4 OTHER OUTPUT COMMANDS: PRINT AND PRINTF 239

ampl: print PROD;
syntax error
context: print >>> PROD; <<<

ampl: print {p in PROD} (p, rate[p]);
bands 200 coils 140

Unlike display, however, print allows indexing to be nested within an indexed item:

ampl: print {p in PROD} (p, rate[p], {t in 1..T} Make[p,t]);
bands 200 5990 6000 1400 2000 coils 140 1407 1400 3500 4200

The representation of numbers in the output of print is governed by the
print_precision and print_round options, which work exactly like the
display_precision and display_round options for the display command.
Initially print_precision is 0 and print_round is an empty string, so that by
default print uses as many digits as necessary to represent each value as precisely as
possible. For the above examples, print_round has been set to 0, so that the numbers
are rounded to integers.

Working interactively, you may find print useful for viewing a few values on your
screen in a more compact format than display produces. With output redirected to a
file, print is useful for writing unformatted results in a form convenient for spread-
sheets and other data analysis tools. As with display, just add >filename to the end of
the print command.

The printf command

The syntax of printf is exactly the same as that of print, except that the first
print item is a character string that provides formatting instructions for the remaining
items:

ampl: printf "Total revenue is $%6.2f.\n",
ampl? sum {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t];
Total revenue is $787810.00.

The format string contains two types of objects: ordinary characters, which are copied to
the output, and conversion specifications, which govern the appearance of successive
remaining print items. Each conversion specification begins with the character % and
ends with a conversion character. For example, %6.2f specifies conversion to a decimal
representation at least six characters wide with two digits after the decimal point. The
complete rules are much the same as for the printf function in the C programming lan-
guage; a summary appears in Section A.16 of the Appendix.

The output from printf is not automatically broken into lines. A line break must
be indicated explicitly by the combination \n, representing a ‘‘newline’’ character, in the
format string. To produce a series of lines, use the indexed version of printf:

240 DISPLAY COMMANDS CHAPTER 12

ampl: printf {t in 1..T}: "%3i%12.2f%12.2f\n", t,
ampl? sum {p in PROD} revenue[p,t]*Sell[p,t],
ampl? sum {p in PROD} prodcost[p]*Make[p,t];

1 159210.00 75377.00
2 243500.00 75400.00
3 167300.00 52500.00
4 217800.00 66200.00

This printf is executed once for each member of the indexing set preceding the colon;
for each t in 1..T the format is applied again, and the \n character generates another
line break.

The printf command is mainly useful, in conjunction with redirection of output to
a file, for printing short summary reports in a readable format. Because the number of
conversion specifications in the format string must match the number of values being
printed, printf cannot conveniently produce tables in which the number of items on a
line may vary from run to run, such as a table of all Make[p,t] values.

12.5 Related solution values

Sets, parameters and variables are the most obvious things to look at in interpreting
the solution of a linear program, but AMPL also provides ways of examining objectives,
bounds, slacks, dual prices and reduced costs associated with the optimal solution.

As we have shown in numerous examples already, AMPL distinguishes the various
values associated with a model component by use of ‘‘qualified’’ names that consist of a
variable or constraint identifier, a dot (.), and a predefined ‘‘suffix’’ string. For instance,
the upper bounds for the variable Make are called Make.ub, and the upper bound for
Make["coils",2] is written Make["coils",2].ub. (Note that the suffix comes
after the subscript.) A qualified name can be used like an unqualified one, so that
display Make.ub prints a table of upper bounds on the Make variables, while
display Make, Make.ub prints a list of the optimal values and upper bounds.

Objective functions

The name of the objective function (from a minimize or maximize declaration)
refers to the objective’s value computed from the current values of the variables. This
name can be used to represent the optimal objective value in display, print, or
printf:

ampl: print 100 * Total_Profit /
ampl? sum {p in PROD, t in 1..T} revenue[p,t] * Sell[p,t];
65.37528084182735

If the current model declares several objective functions, you can refer to any of them,
even though only one has been optimized.

SECTION 12.5 RELATED SOLUTION VALUES 241

Bounds and slacks

The suffixes .lb and .ub on a variable denote its lower and upper bounds, while
.slack denotes the difference of a variable’s value from its nearer bound. Here’s an
example from Figure 5-1:

ampl: display Buy.lb, Buy, Buy.ub, Buy.slack;
: Buy.lb Buy Buy.ub Buy.slack :=
BEEF 2 2 10 0
CHK 2 10 10 0
FISH 2 2 10 0
HAM 2 2 10 0
MCH 2 2 10 0
MTL 2 6.23596 10 3.76404
SPG 2 5.25843 10 3.25843
TUR 2 2 10 0
;

The reported bounds are those that were sent to the solver. Thus they include not only the
bounds specified in >= and <= phrases of var declarations, but also certain bounds that
were deduced from the constraints by AMPL’s presolve phase. Other suffixes let you
look at the original bounds and at additional bounds deduced by presolve; see the discus-
sion of presolve in Section 14.1 for details.

Two equal bounds denote a fixed variable, which is normally eliminated by presolve.
Thus in the planning model of Figure 4-4, the constraint Inv[p,0] = inv0[p] fixes
the initial inventories:

ampl: display {p in PROD} (Inv[p,0].lb,inv0[p],Inv[p,0].ub);
: Inv[p,0].lb inv0[p] Inv[p,0].ub :=
bands 10 10 10
coils 0 0 0
;

In the production-and-transportation model of Figure 4-6, the constraint

sum {i in ORIG} Trans[i,j,p] = demand[j,p]

leads presolve to fix three variables at zero, because demand["LAN","plate"] is
zero:

ampl: display {i in ORIG}
ampl? (Trans[i,"LAN","plate"].lb,Trans[i,"LAN","plate"].ub);
: Trans[i,’LAN’,’plate’].lb Trans[i,’LAN’,’plate’].ub :=
CLEV 0 0
GARY 0 0
PITT 0 0
;

As this example suggests, presolve’s adjustments to the bounds may depend on the data
as well as the structure of the constraints.

The concepts of bounds and slacks have an analogous interpretation for the con-
straints of a model. Any AMPL constraint can be put into the standard form

242 DISPLAY COMMANDS CHAPTER 12

lower bound ≤ body ≤ upper bound

where the body is a sum of all terms involving variables, while the lower bound and
upper bound depend only on the data. The suffixes .lb, .body and .ub give the cur-
rent values of these three parts of the constraint. For example, in the diet model of Figure
5-1 we have the declarations

subject to Diet_Min {i in MINREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] >= n_Min[i];

subject to Diet_Max {i in MAXREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] <= n_Max[i];

and the following constraint bounds:

ampl: display Diet_Min.lb, Diet_Min.body, Diet_Min.ub;
: Diet_Min.lb Diet_Min.body Diet_Min.ub :=
A 700 1013.98 Infinity
B1 0 605 Infinity
B2 0 492.416 Infinity
C 700 700 Infinity
CAL 16000 16000 Infinity
;

ampl: display Diet_Max.lb, Diet_Max.body, Diet_Max.ub;
: Diet_Max.lb Diet_Max.body Diet_Max.ub :=
A -Infinity 1013.98 20000
CAL -Infinity 16000 24000
NA -Infinity 43855.9 50000
;

Naturally, <= constraints have no lower bounds, and >= constraints have no upper
bounds; AMPL uses -Infinity and Infinity in place of a number to denote these
cases. Both the lower and the upper bound can be finite, if the constraint is specified with
two <= or >= operators; see Section 8.4. For an = constraint the two bounds are the
same.

The suffix .slack refers to the difference between the body and the nearer bound:

ampl: display Diet_Min.slack;
Diet_Min.slack [*] :=

A 313.978
B1 605
B2 492.416
C 0

CAL 0
;

For constraints that have a single <= or >= operator, the slack is always the difference
between the expressions to the left and right of the operator, even if there are variables on
both sides. The constraints that have a slack of zero are the ones that are truly constrain-
ing at the optimal solution.

SECTION 12.5 RELATED SOLUTION VALUES 243

Dual values and reduced costs

Associated with each constraint in a linear program is a quantity variously known as
the dual variable, marginal value or shadow price. In the AMPL command environment,
these dual values are denoted by the names of the constraints, without any qualifying suf-
fix. Thus for example in Figure 4-6 there is a collection of constraints named Demand:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

and a table of the dual values associated with these constraints can be viewed by

ampl: display Demand;
Demand [*,*]
: bands coils plate :=
DET 201 190.714 199
FRA 209 204 211
FRE 266.2 273.714 285
LAF 201.2 198.714 205
LAN 202 193.714 0
STL 206.2 207.714 216
WIN 200 190.714 198
;

Solvers return optimal dual values to AMPL along with the optimal values of the ‘‘pri-
mal’’ variables. We have space here only to summarize the most common interpretation
of dual values; the extensive theory of duality and applications of dual variables can be
found in any textbook on linear programming.

To start with an example, consider the constraint Demand["DET","bands"]
above. If we change the value of the parameter demand["DET","bands"] in this
constraint, the optimal value of the objective function Total_Cost changes accord-
ingly. If we were to plot the optimal value of Total_Cost versus all possible values of
demand["DET","bands"], the result would be a cost ‘‘curve’’ that shows how over-
all cost varies with demand for bands at Detroit.

Additional computation would be necessary to determine the entire cost curve, but
you can learn something about it from the optimal dual values. After you solve the linear
program using a particular value of demand["DET","bands"], the dual price for the
constraint tells you the slope of the cost curve, at the demand’s current value. In our
example, reading from the table above, we find that the slope of the curve at the current
demand is 201. This means that total production and shipping cost is increasing at the
rate of $201 for each extra ton of bands demanded at DET, or is decreasing by $201 for
each reduction of one ton in the demand.

As an example of an inequality, consider the following constraint from the same
model:

subject to Time {i in ORIG}:
sum {p in PROD} (1/rate[i,p]) * Make[i,p] <= avail[i];

244 DISPLAY COMMANDS CHAPTER 12

__
__

constant term

optimal
objective

Figure 12-1: Piecewise-linear plot of objective function.
__

Here it is revealing to look at the dual values together with the slacks:

ampl: display Time, Time.slack;
: Time Time.slack :=
CLEV -1522.86 0
GARY -3040 0
PITT 0 10.5643
;

Where the slack is positive, the dual value is zero. Indeed, the positive slack implies that
the optimal solution does not use all of the time available at PITT; hence changing
avail["PITT"] somewhat does not affect the optimum. On the other hand, where the
slack is zero the dual value may be significant. In the case of GARY the value is –3040,
implying that the total cost is decreasing at a rate of $3040 for each extra hour available
at GARY, or is increasing at a rate of $3040 for each hour lost.

In general, if we plot the optimal objective versus a constraint’s constant term, the
curve will be convex piecewise-linear (Figure 12-1) for a minimization, or concave
piecewise-linear (the same, but upside-down) for a maximization.

In terms of the standard form lower bound ≤ body ≤ upper bound introduced previ-
ously, the optimal dual values can be viewed as follows. If the slack of the constraint is
positive, the dual value is zero. If the slack is zero, the body of the constraint must equal
one (or both) of the bounds, and the dual value pertains to the equaled bound or bounds.
Specifically, the dual value is the slope of the plot of the objective versus the bound, eval-
uated at the current value of the bound; equivalently it is the rate of change of the optimal
objective with respect to the bound value.

A nearly identical analysis applies to the bounds on a variable. The role of the dual
value is played by the variable’s so-called reduced cost, which can be viewed from the
AMPL command environment by use of the suffix .rc. As an example, here are the
bounds and reduced costs for the variables in Figure 5-1:

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 245

ampl: display Buy.lb, Buy, Buy.ub, Buy.rc;
: Buy.lb Buy Buy.ub Buy.rc :=
BEEF 2 2 10 1.73663
CHK 2 10 10 -0.853371
FISH 2 2 10 0.255281
HAM 2 2 10 0.698764
MCH 2 2 10 0.246573
MTL 2 6.23596 10 0
SPG 2 5.25843 10 0
TUR 2 2 10 0.343483
;

Since Buy["MTL"] has slack with both its bounds, its reduced cost is zero.
Buy["HAM"] is at its lower bound, so its reduced cost indicates that total cost is increas-
ing at about 70 cents per unit increase in the lower bound, or is decreasing at about 70
cents per unit decrease in the lower bound. On the other hand, Buy["CHK"] is at its
upper bound, and its negative reduced cost indicates that total cost is decreasing at about
85 cents per unit increase in the upper bound, or is increasing at about 85 cents per unit
decrease in the upper bound.

If the current value of a bound happens to lie right at a breakpoint in the relevant
curve — one of the places where the slope changes abruptly in Figure 12-1 — the objec-
tive will change at one rate as the bound increases, but at a different rate as the bound
decreases. In the extreme case either of these rates may be infinite, indicating that the lin-
ear program becomes infeasible if the bound is increased or decreased by any further
amount. A solver reports only one optimal dual price or reduced cost to AMPL, however,
which may be the rate in either direction, or some value between them.

In any case, moreover, a dual price or reduced cost can give you only one slope on the
piecewise-linear curve of objective values. Hence these quantities should only be used as
an initial guide to the objective’s sensitivity to certain variable or constraint bounds. If
the sensitivity is very important to your application, you can make a series of runs with
different bound settings; see Section 11.3 for ways to quickly change a small part of the
data. (There do exist algorithms for finding part or all of the piecewise-linear curve,
given a linear change in one or more bounds, but they are not directly supported by the
current version of AMPL.)

12.6 Other display features for models and instances

We gather in this section various utility commands and other features for displaying
information about models or about problem instances generated from models.

Two commands let you review an AMPL model from the command-line: show lists
the names of model components and displays the definitions of individual components,
while xref lists all components that depend on a given component. The expand com-
mand displays selected objectives and constraints that AMPL has generated from a model
and data, or analogous information for variables. AMPL’s ‘‘generic’’ names for variables,

246 DISPLAY COMMANDS CHAPTER 12

constraints, or objectives permit listings or tests that apply to all variables, constraints, or
objectives.

Displaying model components: the show command:

By itself, the show command lists the names of all components of the current model:

ampl: model multmip3.mod;
ampl: show;
parameters: demand fcost limit maxserve minload supply vcost
sets: DEST ORIG PROD
variables: Trans Use
constraints: Demand Max_Serve Min_Ship Multi Supply
objective: Total_Cost
checks: one, called check 1.

This display may be restricted to components of one or more types:

ampl: show vars;
variables: Trans Use
ampl: show obj, constr;
objective: Total_Cost
constraints: Demand Max_Serve Min_Ship Multi Supply

The show command can also display the declarations of individual components, saving
you the trouble of looking them up in the model file:

ampl: show Total_Cost;
minimize Total_Cost: sum{i in ORIG, j in DEST, p in PROD}
vcost[i,j,p]*Trans[i,j,p] + sum{i in ORIG, j in DEST}
fcost[i,j]*Use[i,j];
ampl: show vcost, fcost, Trans;
param vcost{ORIG, DEST, PROD} >= 0;
param fcost{ORIG, DEST} >= 0;
var Trans{ORIG, DEST, PROD} >= 0;

If an item following show is the name of a component in the current model, the declara-
tion of that component is displayed. Otherwise, the item is interpreted as a component
type according to its first letter or two; see Section A.19.1. (Displayed declarations may
differ in inessential ways from their appearance in your model file, due to transformations
that AMPL performs when the model is parsed and translated.)

Since the check statements in a model do not have names, AMPL numbers them in
the order that they appear. Thus to see the third check statement you would type

ampl: show check 3;
check{p in PROD} :

sum{i in ORIG} supply[i,p] == sum{j in DEST} demand[j,p];

By itself, show checks indicates the number of check statements in the model.

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 247

Displaying model dependencies: the xref command

The xref command lists all model components that depend on a specified compo-
nent, either directly (by referring to it) or indirectly (by referring to its dependents). If
more than one component is given, the dependents are listed separately for each. Here is
an example from multmip3.mod:

ampl: xref demand, Trans;
2 entities depend on demand:
check 1
Demand
5 entities depend on Trans:
Total_Cost
Supply
Demand
Multi
Min_Ship

In general, the command is simply the keyword xref followed by a comma-separated
list of any combination of set, parameter, variable, objective and constraint names.

Displaying model instances: the expand command

In checking a model and its data for correctness, you may want to look at some of the
specific constraints that AMPL is generating. The expand command displays all con-
straints in a given indexed collection or specific constraints that you identify:

ampl: model nltrans.mod;
ampl: data nltrans.dat;
ampl: expand Supply;
subject to Supply[’GARY’]:

Trans[’GARY’,’FRA’] + Trans[’GARY’,’DET’] +
Trans[’GARY’,’LAN’] + Trans[’GARY’,’WIN’] +
Trans[’GARY’,’STL’] + Trans[’GARY’,’FRE’] +
Trans[’GARY’,’LAF’] = 1400;

subject to Supply[’CLEV’]:
Trans[’CLEV’,’FRA’] + Trans[’CLEV’,’DET’] +
Trans[’CLEV’,’LAN’] + Trans[’CLEV’,’WIN’] +
Trans[’CLEV’,’STL’] + Trans[’CLEV’,’FRE’] +
Trans[’CLEV’,’LAF’] = 2600;

subject to Supply[’PITT’]:
Trans[’PITT’,’FRA’] + Trans[’PITT’,’DET’] +
Trans[’PITT’,’LAN’] + Trans[’PITT’,’WIN’] +
Trans[’PITT’,’STL’] + Trans[’PITT’,’FRE’] +
Trans[’PITT’,’LAF’] = 2900;

(See Figures 18-4 and 18-5.) The ordering of terms in an expanded constraint does not
necessarily correspond to the order of the symbolic terms in the constraint’s declaration.

Objectives may be expanded in the same way:

248 DISPLAY COMMANDS CHAPTER 12

ampl: expand Total_Cost;
minimize Total_Cost:

39*Trans[’GARY’,’FRA’]/(1 - Trans[’GARY’,’FRA’]/500) + 14*
Trans[’GARY’,’DET’]/(1 - Trans[’GARY’,’DET’]/1000) + 11*
Trans[’GARY’,’LAN’]/(1 - Trans[’GARY’,’LAN’]/1000) + 14*
Trans[’GARY’,’WIN’]/(1 - Trans[’GARY’,’WIN’]/1000) + 16*
... 15 lines omitted
Trans[’PITT’,’FRE’]/(1 - Trans[’PITT’,’FRE’]/500) + 20*
Trans[’PITT’,’LAF’]/(1 - Trans[’PITT’,’LAF’]/900);

When expand is applied to a variable, it lists all of the nonzero coefficients of that
variable in the linear terms of objectives and constraints:

ampl: expand Trans;
Coefficients of Trans[’GARY’,’FRA’]:

Supply[’GARY’] 1
Demand[’FRA’] 1
Total_Cost 0 + nonlinear

Coefficients of Trans[’GARY’,’DET’]:
Supply[’GARY’] 1
Demand[’DET’] 1
Total_Cost 0 + nonlinear

Coefficients of Trans[’GARY’,’LAN’]:
Supply[’GARY’] 1
Demand[’LAN’] 1
Total_Cost 0 + nonlinear

Coefficients of Trans[’GARY’,’WIN’]:
Supply[’GARY’] 1
Demand[’WIN’] 1
Total_Cost 0 + nonlinear

... 17 terms omitted

When a variable also appears in nonlinear expressions within an objective or a constraint,
the term + nonlinear is appended to represent those expressions.

The command expand alone produces an expansion of all variables, objectives and
constraints in a model. Since a single expand command can produce a very long listing,
you may want to redirect its output to a file by placing >filename at the end as explained
in Section 12.7 below.

The formatting of numbers in the expanded output is governed by the options
expand_precision and expand_round, which work like the display
command’s display_precision and display_round described in Section 12.3.

The output of expand reflects the ‘‘modeler’s view’’ of the problem; it is based on
the model and data as they were initially read and translated. But AMPL’s presolve phase
(Section 14.1) may make significant simplifications to the problem before it is sent to the
solver. To see the expansion of the ‘‘solver’s view’’ of the problem following presolve,
use the keyword solexpand in place of expand.

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 249

Generic synonyms for variables, constraints and objectives

Occasionally it is useful to make a listing or a test that applies to all variables, con-
straints, or objectives. For this purpose, AMPL provides automatically updated parame-
ters that hold the numbers of variables, constraints, and objectives in the currently gener-
ated problem instance:

_nvars number of variables in the current problem
_ncons number of constraints in the current problem
_nobjs number of objectives in the current problem

Correspondingly indexed parameters contain the AMPL names of all the components:

_varname{1.._nvars} names of variables in the current problem
_conname{1.._ncons} names of constraints in the current problem
_objname{1.._nobjs} names of objectives in the current problem

Finally, the following synonyms for the components are made available:

_var{1.._nvars} synonyms for variables in the current problem
_con{1.._ncons} synonyms for constraints in the current problem
_obj{1.._nobjs} synonyms for objectives in the current problem

These synonyms let you refer to components by number, rather than by the usual indexed
names. Using the variables as an example, _var[5] refers to the fifth variable in the
problem, _var[5].ub to its upper bound, _var[5].rc to its reduced cost, and so
forth, while _varname[5] is a string giving the variable’s true AMPL name. Table A-
13 lists all of the generic synonyms for sets, variables, and the like.

Generic names are useful for tabulating properties of all variables, where the variables
have been defined in several different var declarations:

ampl: model net3.mod
ampl: data net3.dat
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 1819

ampl: display {j in 1.._nvars}
ampl? (_varname[j],_var[j],_var[j].ub,_var[j].rc);

: _varname[j] _var[j] _var[j].ub _var[j].rc :=
1 "PD_Ship[’NE’]" 250 250 -0.5
2 "PD_Ship[’SE’]" 200 250 -1.11022e-16
3 "DW_Ship[’NE’,’BOS’]" 90 90 0
4 "DW_Ship[’NE’,’EWR’]" 100 100 -1.1
5 "DW_Ship[’NE’,’BWI’]" 60 100 0
6 "DW_Ship[’SE’,’EWR’]" 20 100 2.22045e-16
7 "DW_Ship[’SE’,’BWI’]" 60 100 2.22045e-16
8 "DW_Ship[’SE’,’ATL’]" 70 70 0
9 "DW_Ship[’SE’,’MCO’]" 50 50 0
;

250 DISPLAY COMMANDS CHAPTER 12

Another use is to list all variables having some property, such as being away from the
upper bound in the optimal solution:

ampl: display {j in 1.._nvars:
ampl? _var[j] < _var[j].ub - 0.00001} _varname[j];
_varname[j] [*] :=
2 "PD_Ship[’SE’]"
5 "DW_Ship[’NE’,’BWI’]"
6 "DW_Ship[’SE’,’EWR’]"
7 "DW_Ship[’SE’,’BWI’]"
;

The same comments apply to constraints and objectives. More precise formatting of this
information can be obtained with printf (12.4, A.16) instead of display.

As in the case of the expand command, these parameters and generic synonyms
reflect the modeler’s view of the problem; their values are determined from the model
and data as they were initially read and translated. AMPL’s presolve phase may make sig-
nificant simplifications to the problem before it is sent to the solver. To work with
parameters and generic synonyms that reflect the solver’s view of the problem following
presolve, replace _ by _s in the names given above; for example in the case of variables,
use _snvars, _svarname and _svar.

Additional predefined sets and parameters represent the names and dimensions (ari-
ties) of the model components. They are summarized in A.19.4.

Resource listings

Changing option show_stats from its default of 0 to a nonzero value requests sum-
mary statistics on the size of the optimization problem that AMPL generates:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: option show_stats 1;
ampl: solve;

Presolve eliminates 2 constraints and 2 variables.
Adjusted problem:
24 variables, all linear
12 constraints, all linear; 38 nonzeros
1 linear objective; 24 nonzeros.

MINOS 5.5: optimal solution found.
15 iterations, objective 515033

Additional lines report the numbers of integer and variables and nonlinear components
where appropriate.

Changing option times from its default of 0 to a nonzero value requests a summary
of the AMPL translator’s time and memory requirements. Similarly, by changing option
gentimes to a nonzero value, you can get a detailed summary of the resources that
AMPL’s genmod phase consumes in generating a model instance.

SECTION 12.7 GENERAL FACILITIES FOR MANIPULATING OUTPUT 251

When AMPL appears to hang or takes much more time than expected, the display pro-
duced by gentimes can help associate the difficulty with a particular model compo-
nent. Typically, some parameter, variable or constraint has been indexed over a set far
larger than intended or anticipated, with the result that excessive amounts of time and
memory are required.

The timings given by these commands apply only to the AMPL translator, not to the
solver. A variety of predefined parameters (Table A-14) let you work with both AMPL
and solver times. For example, _solve_time always equals total CPU seconds
required for the most recent solve command, and _ampl_time equals total CPU sec-
onds for AMPL excluding time spent in solvers and other external programs.

Many solvers also have directives for requesting breakdowns of the solve time. The
specifics vary considerably, however, so information on requesting and interpreting these
timings is provided in the documentation of AMPL’s links to individual solvers, rather
than in this book.

12.7 General facilities for manipulating output

We describe here how some or all of AMPL’s output can be directed to a file, and how
the volume of warning and error messages can be regulated.

Redirection of output

The examples in this book all show the outputs of commands as they would appear in
an interactive session, with typed commands and printed responses alternating. You may
direct all such output to a file instead, however, by adding a > and the name of the file:

ampl: display ORIG, DEST, PROD >multi.out;
ampl: display supply >multi.out;

The first command that specifies >multi.out creates a new file by that name (or over-
writes any existing file of the same name). Subsequent commands add to the end of the
file, until the end of the session or a matching close command:

ampl: close multi.out;

To open a file and append output to whatever is already there (rather than overwriting),
use >> instead of >. Once a file is open, subsequent uses of > and >> have the same
effect.

Output logs

The log_file option instructs AMPL to save subsequent commands and responses
to a file. The option’s value is a string that is interpreted as a filename:

ampl: option log_file ’multi.tmp’;

252 DISPLAY COMMANDS CHAPTER 12

The log file collects all AMPL statements and the output that they produce, with a few
exceptions described below. Setting log_file to the empty string:

ampl: option log_file ’’;

turns off writing to the file; the empty string is the default value for this option.
When AMPL reads from an input file by means of a model or data command (or an

include command as defined in Chapter 13), the statements from that file are not nor-
mally copied to the log file. To request that AMPL echo the contents of input files,
change option log_model (for input in model mode) or log_data (for input in data
mode) from the default value of 0 to a nonzero value.

When you invoke a solver, AMPL logs at least a few lines summarizing the objective
value, solution status and work required. Through solver-specific directives, you can typ-
ically request additional solver output such as logs of iterations or branch-and-bound
nodes. Many solvers automatically send all of their output to AMPL’s log file, but this
compatibility is not universal. If a solver’s output does not appear in your log file, you
should consult the supplementary documentation for that solver’s AMPL interface; possi-
bly that solver accepts nonstandard directives for diverting its output to files.

Limits on messages

By specifying option eexit n, where n is some integer, you determine how AMPL
handles error messages. If n is not zero, any AMPL statement is terminated after it has
produced abs(n) error messages; a negative value causes only the one statement to be
terminated, while a positive value results in termination of the entire AMPL session. The
effect of this option is most often seen in the use of model and data statements where
something has gone badly awry, like using the wrong file:

ampl: option eexit -3;
ampl: model diet.mod;
ampl: data diet.mod;
diet.mod, line 4 (offset 32):

expected ; ([: or symbol
context: param cost >>> { <<< FOOD} > 0;

diet.mod, line 5 (offset 56):
expected ; ([: or symbol

context: param f_min >>> { <<< FOOD} >= 0;

diet.mod, line 6 (offset 81):
expected ; ([: or symbol

context: param f_max >>> { <<< j in FOOD} >= f_min[j];

Bailing out after 3 warnings.

The default value for eexit is –10. Setting it to 0 causes all error messages to be dis-
played.

The eexit setting also applies to infeasibility warnings produced by AMPL’s pre-
solve phase after you type solve. The number of these warnings is simultaneously lim-

SECTION 12.7 GENERAL FACILITIES FOR MANIPULATING OUTPUT 253

ited by the value of option presolve_warnings, which is typically set to a smaller
value; the default is 5.

An AMPL data statement may specify values that correspond to illegal combinations
of indices, due to any number of mistakes such as incorrect index sets in the model,
indices in the wrong order, misuse of (tr), and typing errors. Similar errors may be
caused by let statements that change the membership of index sets. AMPL catches these
errors after solve is typed. The number of invalid combinations displayed is limited to
the value of the option bad_subscripts, whose default value is 3.

