
________________________________________________________________________________________________
Introduction

As our title suggests, there are two aspects to the subject of this book. The first is
mathematical programming, the optimization of a function of many variables subject to
constraints. The second is the AMPL modeling language, which we designed and imple-
mented to help people use computers to develop and apply mathematical programming
models.

We intend this book as an introduction both to mathematical programming and to
AMPL. For readers already familiar with mathematical programming, it can serve as a
user’s guide and reference manual for the AMPL software. We assume no previous
knowledge of the subject, however, and hope that this book will also encourage the use of
mathematical programming models by those who are new to the field.

Mathematical programming

The term ‘‘programming’’ was in use by 1940 to describe the planning or scheduling
of activities within a large organization. ‘‘Programmers’’ found that they could represent
the amount or level of each activity as a variable whose value was to be determined.
Then they could mathematically describe the restrictions inherent in the planning or
scheduling problem as a set of equations or inequalities involving the variables. A solu-
tion to all of these constraints would be considered an acceptable plan or schedule.

Experience soon showed that it was hard to model a complex operation simply by
specifying constraints. If there were too few constraints, many inferior solutions could
satisfy them; if there were too many constraints, desirable solutions were ruled out, or in
the worst case no solutions were possible. The success of programming ultimately
depended on a key insight that provided a way around this difficulty. One could specify,
in addition to the constraints, an objective: a function of the variables, such as cost or pro-
fit, that could be used to decide whether one solution was better than another. Then it
didn’t matter that many different solutions satisfied the constraints — it was sufficient to
find one such solution that minimized or maximized the objective. The term mathemati-
cal programming came to be used to describe the minimization or maximization of an
objective function of many variables, subject to constraints on the variables.

xv

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text



xvi INTRODUCTION

In the development and application of mathematical programming, one special case
stands out: that in which all the costs, requirements and other quantities of interest are
terms strictly proportional to the levels of the activities, or sums of such terms. In mathe-
matical terminology, the objective is a linear function, and the constraints are linear equa-
tions and inequalities. Such a problem is called a linear program , and the process of set-
ting up such a problem and solving it is called linear programming. Linear programming
is particularly important because a wide variety of problems can be modeled as linear
programs, and because there are fast and reliable methods for solving linear programs
even with thousands of variables and constraints. The ideas of linear programming are
also important for analyzing and solving mathematical programming problems that are
not linear.

All useful methods for solving linear programs require a computer. Thus most of the
study of linear programming has taken place since the late 1940’s, when it became clear
that computers would be available for scientific computing. The first successful compu-
tational method for linear programming, the simplex algorithm, was proposed at this
time, and was the subject of increasingly effective implementations over the next decade.
Coincidentally, the development of computers gave rise to a now much more familiar
meaning for the term ‘‘programming.’’

In spite of the broad applicability of linear programming, the linearity assumption is
sometimes too unrealistic. If instead some smooth nonlinear functions of the variables
are used in the objective or constraints, the problem is called a nonlinear program. Solv-
ing such a problem is harder, though in practice not impossibly so. Although the optimal
values of nonlinear functions have been a subject of study for over two centuries, compu-
tational methods for solving nonlinear programs in many variables were developed only
in recent decades, after the success of methods for linear programming. The field of
mathematical programming is thus also known as large scale optimization, to distinguish
it from the classical topics of optimization in mathematical analysis.

The assumptions of linear programming also break down if some variables must take
on whole number, or integral, values. Then the problem is called integer programming,
and in general becomes much harder. Nevertheless, a combination of faster computers
and more sophisticated methods have made large integer programs increasingly tractable
in recent years.

The AMPL modeling language

Practical mathematical programming is seldom as simple as running some algorithmic
method on a computer and printing the optimal solution. The full sequence of events is
more like this:

• Formulate a model, the abstract system of variables, objectives, and constraints that
represent the general form of the problem to be solved.

• Collect data that define a specific problem instance.
• Generate a specific objective function and constraint equations from the model and

data.



INTRODUCTION xvii

• Solve the problem instance by running a program, or solver , to apply an algorithm
that finds optimal values of the variables.

• Analyze the results.
• Refine the model and data as necessary, and repeat.

If people could deal with mathematical programs in the same way that solvers do, the for-
mulation and generation phases of modeling might be relatively straightforward. In real-
ity, however, there are many differences between the form in which human modelers
understand a problem and the form in which solver algorithms work with it. Conversion
from the ‘‘modeler’s form’’ to the ‘‘algorithm’s form’’ is consequently a time-
consuming, costly, and often error-prone procedure.

In the special case of linear programming, the largest part of the algorithm’s form is
the constraint coefficient matrix, which is the table of numbers that multiply all the vari-
ables in all the constraints. Typically this is a very sparse (mostly zero) matrix with any-
where from hundreds to hundreds of thousands of rows and columns, whose nonzero ele-
ments appear in intricate patterns. A computer program that produces a compact repre-
sentation of the coefficients is called a matrix generator. Several programming languages
have been designed specifically for writing matrix generators, and standard computer pro-
gramming languages are also often used.

Although matrix generators can successfully automate some of the work of translation
from modeler’s form to algorithm’s form, they remain difficult to debug and maintain.
One way around much of this difficulty lies in the use of a modeling language for mathe-
matical programming. A modeling language is designed to express the modeler’s form in
a way that can serve as direct input to a computer system. Then the translation to the
algorithm’s form can be performed entirely by computer, without the intermediate stage
of computer programming. Modeling languages can help to make mathematical pro-
gramming more economical and reliable; they are particularly advantageous for develop-
ment of new models and for documentation of models that are subject to change.

Since there is more than one form that modelers use to express mathematical pro-
grams, there is more than one kind of modeling language. An algebraic modeling lan-
guage is a popular variety based on the use of traditional mathematical notation to
describe objective and constraint functions. An algebraic language provides computer-
readable equivalents of notations such as x j + y j , Σ j = 1

n a i j x j , x j ≥ 0, and j ∈S that would
be familiar to anyone who has studied algebra or calculus. Familiarity is one of the major
advantages of algebraic modeling languages; another is their applicability to a particu-
larly wide variety of linear, nonlinear and integer programming models.

While successful algorithms for mathematical programming first came into use in the
1950’s, the development and distribution of algebraic modeling languages only began in
the 1970’s. Since then, advances in computing and computer science have enabled such
languages to become steadily more efficient and general.

This book describes AMPL, an algebraic modeling language for mathematical pro-
gramming; it was designed and implemented by the authors around 1985, and has been
evolving ever since. AMPL is notable for the similarity of its arithmetic expressions to
customary algebraic notation, and for the generality and power of its set and subscripting



xviii INTRODUCTION

expressions. AMPL also extends algebraic notation to express common mathematical
programming structures such as network flow constraints and piecewise linearities.

AMPL offers an interactive command environment for setting up and solving mathe-
matical programming problems. A flexible interface enables several solvers to be avail-
able at once so a user can switch among solvers and select options that may improve
solver performance. Once optimal solutions have been found, they are automatically
translated back to the modeler’s form so that people can view and analyze them. All of
the general set and arithmetic expressions of the AMPL modeling language can also be
used for displaying data and results; a variety of options are available to format data for
browsing, printing reports, or preparing input to other programs.

Through its emphasis on AMPL, this book differs considerably from the presentation
of modeling in standard mathematical programming texts. The approach taken by a typi-
cal textbook is still strongly influenced by the circumstances of 30 years ago, when a stu-
dent might be lucky to have the opportunity to solve a few small linear programs on any
actual computer. As encountered in such textbooks, mathematical programming often
appears to require only the conversion of a ‘‘word problem’’ into a small system of
inequalities and an objective function, which are then presented to a simple optimization
package that prints a short listing of answers. While this can be a good approach for
introductory purposes, it is not workable for dealing with the hundreds or thousands of
variables and constraints that are found in most real-world mathematical programs.

The availability of an algebraic modeling language makes it possible to emphasize the
kinds of general models that can be used to describe large-scale optimization problems.
Each AMPL model in this book describes a whole class of mathematical programming
problems, whose members correspond to different choices of indexing sets and numerical
data. Even though we use relatively small data sets for illustration, the resulting prob-
lems tend to be larger than those of the typical textbook. More important, the same
approach, using still larger data sets, works just as well for mathematical programs of
realistic size and practical value.

We have not attempted to cover the optimization theory and algorithmic details that
comprise the greatest part of most mathematical programming texts. Thus, for readers
who want to study the whole field in some depth, this book is a complement to existing
textbooks, not a replacement. On the other hand, for those whose immediate concern is
to apply mathematical programming to a particular problem, the book can provide a use-
ful introduction on its own.

In addition, AMPL software is readily available for experiment: the AMPL web site,
www.ampl.com, provides free downloadable ‘‘student’’ versions of AMPL and repre-
sentative solvers that run on Windows, Unix/Linux, and Mac OS X. These can easily
handle problems of a few hundred variables and constraints, including all of the examples
in the book. Versions that support much larger problems and additional solvers are also
available from a variety of vendors; again, details may be found on the web site.



INTRODUCTION xix

Outline of the book

The second edition, like the first, is organized conceptually into four parts. Chapters
1 through 4 are a tutorial introduction to models for linear programming:

1. Production Models: Maximizing Profits
2. Diet and Other Input Models: Minimizing Costs
3. Transportation and Assignment Models
4. Building Larger Models

These chapters are intended to get you started using AMPL as quickly as possible. They
include a brief review of linear programming and a discussion of a handful of simple
modeling ideas that underlie most large-scale optimization problems. They also illustrate
how to provide the data that convert a model into a specific problem instance, how to
solve a problem, and how to display the answers.

The next four chapters describe the fundamental components of an AMPL linear pro-
gramming model in detail, using more complex examples to examine major aspects of the
language systematically:

5. Simple Sets and Indexing
6. Compound Sets and Indexing
7. Parameters and Expressions
8. Linear Programs: Variables, Objectives and Constraints

We have tried to cover the most important features, so that these chapters can serve as a
general user’s guide. Each feature is introduced by one or more examples, building on
previous examples wherever possible.

The following six chapters describe how to use AMPL in more sophisticated ways:

9. Specifying Data
10. Database Access
11. Modeling Commands
12. Display Commands
13. Command Scripts
14. Interactions with Solvers

The first two of these chapters explain how to provide the data values that define a spe-
cific instance of a model; Chapter 9 describes AMPL’s text file data format, while Chapter
10 presents features for access to information in relational database systems. Chapter 11
explains the commands that read models and data, and invoke solvers; Chapter 12 shows
how to display and save results. AMPL provides facilities for creating scripts of com-
mands, and for writing loops and conditional statements; these are covered in Chapter 13.
Chapter 14 goes into more detail on how to interact with solvers so as to make the best
use of their capabilities and the information they provide.

Finally, we turn to the rich variety of problems and applications beyond purely linear
models. The remaining chapters deal with six important special cases and generaliza-
tions:



xx INTRODUCTION

15. Network Linear Programs
16. Columnwise Formulations
17. Piecewise-Linear Programs
18. Nonlinear Programs
19. Complementarity Problems
20. Integer Linear Programs

Chapters 15 and 16 describe additional language features that help AMPL represent par-
ticular kinds of linear programs more naturally, and that may help to speed translation
and solution. The last four chapters cover generalizations that can help models to be
more realistic than linear programs, although they can also make the resulting optimiza-
tion problems harder to solve.

Appendix A is the AMPL reference manual; it describes all language features, includ-
ing some not mentioned elsewhere in the text. Bibliography and exercises may be found
in most of the chapters.

About the second edition

AMPL has evolved a lot in ten years, but its core remains essentially unchanged, and
almost all of the models from the first edition work with the current program. Although
we have made substantial revisions throughout the text, much of the brand new material
is concentrated in the third part, where the original single chapter on the command envi-
ronment has been expanded into five chapters. In particular, database access, scripts and
programming constructs represent completely new material, and many additional AMPL
commands for examining models and accessing solver information have been added.

The first edition was written in 1992, just before the explosion in Internet and web
use, and while personal computers were still rather limited in their capabilities; the first
student versions of AMPL ran on DOS on tiny, slow machines, and were distributed on
floppy disks.

Today, the web site at www.ampl.com is the central source for all AMPL informa-
tion and software. Pages at this site cover all that you need to learn about and experiment
with optimization and the use of AMPL:

• Free versions of AMPL for a variety of operating systems.
• Free versions of several solvers for a variety of problem types.
• All of the model and data files used as examples in this book.

The free software is fully functional, save that it can only handle problems of a few hun-
dred variables and constraints. Unrestricted commercial versions of AMPL and solvers
are available as well; see the web site for a list of vendors.

You can also try AMPL without downloading any software, through browser inter-
faces at www.ampl.com/TRYAMPL and the NEOS Server (neos.mcs.anl.gov).
The AMPL web site also provides information on graphical user interfaces and new AMPL
language features, which are under continuing development.



INTRODUCTION xxi

Acknowledgements to the first edition

We are deeply grateful to Jon Bentley and Margaret Wright, who made extensive
comments on several drafts of the manuscript. We also received many helpful sugges-
tions on AMPL and the book from Collette Coullard, Gary Cramer, Arne Drud, Grace
Emlin, Gus Gassmann, Eric Grosse, Paul Kelly, Mark Kernighan, Todd Lowe, Bob Rich-
ton, Michael Saunders, Robert Seip, Lakshman Sinha, Chris Van Wyk, Juliana Vignali,
Thong Vukhac, and students in the mathematical programming classes at Northwestern
University. Lorinda Cherry helped with indexing, and Jerome Shepheard with typeset-
ting. Our sincere thanks to all of them.

Bibliography

E. M. L. Beale, ‘‘Matrix Generators and Output Analyzers.’’ In Harold W. Kuhn (ed.), Proceed-
ings of the Princeton Symposium on Mathematical Programming , Princeton University Press
(Princeton, NJ, 1970) pp. 25–36. A history and explanation of matrix generator software for linear
programming.

Johannes Bisschop and Alexander Meeraus, ‘‘On the Development of a General Algebraic Model-
ing System in a Strategic Planning Environment.’’ Mathematical Programming Study 20 (1982)
pp. 1–29. An introduction to GAMS, one of the first and most widely used algebraic modeling lan-
guages.

Robert E. Bixby, ‘‘Solving Real-World Linear Programs: A Decade and More of Progress.’’ Oper-
ations Reearch 50 (2002) pp. 3)–15. A history of recent advances in solvers for linear program-
ming. Also in this issue are accounts of the early days of mathematical programming by pioneers
of the field.

George B. Dantzig, ‘‘Linear Programming: The Story About How It Began.’’ In Jan Karel Lens-
tra, Alexander H. G. Rinnooy Kan and Alexander Schrijver, eds., History of Mathematical Pro-
gramming: A Collection of Personal Reminiscences. North-Holland (Amsterdam, 1991) pp. 19–31.
A source for our brief account of the history of linear programming. Dantzig was a pioneer of such
key ideas as objective functions and the simplex algorithm.

Robert Fourer, ‘‘Modeling Languages versus Matrix Generators for Linear Programming.’’ ACM
Transactions on Mathematical Software 9 (1983) pp. 143–183. The case for modeling languages.

C. A. C. Kuip, ‘‘Algebraic Languages for Mathematical Programming.’’ European Journal of
Operational Research 67 (1993) 25–51. A survey.




